
Dragon Suite
Software Documentation

Dragon Suite 2

Inhaltsverzeichnis
1 Copyright .. 5
2 Dragon Suite Change Log ... 6
3 Documentation History .. 18
4 Introduction ... 19

4.1 Symbols .. 19
4.2 Liability and Warranty Exclusion .. 19

5 Installation .. 20
5.1 Supported Hardware ... 20
5.2 Prerequisites ... 20

5.2.1 System Requirements ... 20
5.2.2 Hardware Installation ... 20

5.3 Software Installation .. 20
5.4 Update Manager ... 21

6 Using the GUI ... 23
6.1 Menu Bar ... 23
6.2 Toolbar .. 24
6.3 Interface Tree .. 25
6.4 Main Frame ... 27
6.5 Message Box ... 27

7 Setting up the Frame Generator .. 29
7.1 General .. 30
7.2 Signal Levels ... 31
7.3 Signal Routing .. 32
7.4 SerDes Config ... 33
7.5 External Board .. 35
7.6 Sideband Settings .. 37

7.6.1 UART .. 38
7.6.2 I²C ... 38
7.6.3 SPI .. 39

7.7 LVDS Channels .. 40
7.7.1 Open LDI Mode ... 41
7.7.2 RxTx Loop .. 42

7.8 IO Routing ... 42
7.9 Ethernet .. 42

7.9.1 Example ... 44
7.10 LVDS Info ... 45

8 Frame Generator Dialog Window .. 47
8.1 Files on the Device ... 48
8.2 Display color ... 48
8.3 Display Direct ... 49
8.4 Video Preview ... 50
8.5 Pattern Generator ... 50

8.5.1 Advanced Pattern Generator ... 52
9 Setting up the Frame Grabber ... 53

9.1 General .. 54
9.2 Signal Levels ... 55
9.3 Signal Routing .. 56
9.4 SerDes Config ... 57
9.5 External Board .. 57
9.6 Sideband Settings .. 57
9.7 LVDS Channels .. 57

9.7.1 Open LDI Mode ... 60
9.7.2 RxTx Loop .. 60

Dragon Suite 3

9.8 IO Routing ... 62
9.9 Ethernet .. 62
9.10 LVDS Info ... 62

9.10.1 LVDS Information of basicCON 4121 .. 63
9.10.2 LVDS Information of Video Dragon 6222.. 63

10 Frame Grabber Dialog Window .. 65
10.1 Tool Box .. 66
10.2 Capture Settings ... 66
10.3 Compare Settings .. 67
10.4 Avi Settings ... 68
10.5 Raw Data Recording .. 68
10.6 Frame Area .. 69

11 Sideband Communication ... 70
11.1 Configuration of Sideband Communication via G-API ... 71

11.1.1 Setting the Data Mode ... 71
11.1.2 Setting the Parameters .. 71

11.2 I²C Master Mode ... 72
11.2.1 Communication ... 72

11.2.1.1 I²C Transfer on the Bus .. 72
11.2.1.2 I²C Transfer by Command ... 73
11.2.1.3 I²C Protocol ... 74

11.3 I²C Slave Mode ... 74
11.3.1 Communication ... 74

11.3.1.1 I²C Slave Definition by command .. 75
11.4 SPI Mode ... 75
11.5 SPI Master Mode ... 75

11.5.1 Communication ... 76
11.5.1.1 SPI Transfer on the Bus .. 76
11.5.1.2 SPI Transfer by Command ... 76

11.6 SPI Slave Mode ... 77
11.6.1 Communication ... 77

11.7 SPI Dual Mode .. 77
11.7.1 Communication ... 78

11.7.1.1 SPI Transfer by Command ... 78
11.8 UART Mode ... 78

11.8.1 Communication of basicCON 4121 .. 78
11.8.1.1 UART Transfer by Command ... 78

11.8.2 Communication of Video Dragon 6222 ... 79
11.9 Sideband Communication Tool .. 80

11.9.1 UART .. 81
11.9.2 I²C ... 82
11.9.3 SPI .. 83
11.9.4 Indigo ... 84

12 File Manager Tool ... 85
13 IO Tool ... 86

13.1 Digital IO .. 86
13.2 Trigger .. 87

13.2.1 SerDes GPIO .. 90
13.2.2 Examples ... 91

14 CAN Tool ... 93
14.1 CAN Node .. 93
14.2 CAN - UART Gateway ... 94

14.2.1 Example ... 94
15 Sequence Interface .. 97
16 Command Line Interface .. 98
17 Dragon Suite Advanced .. 99

Dragon Suite 4

17.1 Script Interface ... 100
17.2 Raw Data Recording .. 103
17.3 Monitor Dialog .. 105

17.3.1 CAN Monitor .. 105
17.3.2 SPI Monitor/ SPI Analyzer ... 106

17.3.2.1 Example for SPI Monitor .. 109
17.3.3 UART Monitor/ UART Analyzer ... 111

17.3.3.1 Example for UART Monitor .. 111
17.4 MiMfp Config Tab .. 113

18 Additional Features ... 115
18.1 TCP Remote Control .. 115

18.1.1 Server Settings .. 115
18.1.2 Client Settings ... 116
18.1.3 Remote control .. 116
18.1.4 Tray mode ... 119

19 First Steps ... 120
19.1 System Structure ... 120
19.2 Registration ... 120
19.3 Configuration .. 121
19.4 Capturing .. 123

20 Common Error Messages .. 124
21 Service and Support ... 125

21.1 Spare Parts and Accessories ... 125
21.2 Warranty and Repair .. 125

21.2.1 Conditions ... 125
21.2.2 Identification ... 125

22 Disposal .. 126
22.1 Disposal of used Electrical / Electronic Equipment .. 126
22.2 Disposal of used Disposable / Rechargeable Batteries .. 126

Dragon Suite 5

1 Copyright
Copyright © 2024 GÖPEL electronic GmbH. All rights reserved.

The software described in this manual as well as the manual itself are supplied under license and may
be used or copied only in accordance with the terms of the license. The customer may make one copy
of the software for safety purposes.

The contents of the manual is subject to change without prior notice and is supplied for information
only. Hardware and software might be modified also without prior notice due to technical progress. In
case of inaccuracies or errors appearing in this manual, GÖPEL electronic GmbH assumes no liability or
responsibility.

Without the prior written permission of GÖPEL electronic GmbH, no part of this documentation may be
transmitted, reproduced or stored in a retrieval system in any form or by any means as well as
translated into other languages (except as permitted by the license).

GÖPEL electronic GmbH is neither liable for direct damages nor consequential damages from the
company's product applications.

Version: 2.0.12
Printed: 2/26/2024

All product and company names appearing in this manual are trade names or registered trade names
of their respective owners.

Dragon Suite 6

2 Dragon Suite Change Log

New Release 1.994

New features:

· added LockInfo for DS90UB913 to LVDS_Info_Dialog

· added colorformat YUV for PixelMode RGB888

· added DT - Compressed Data Stream to channel settings Dialog for Mipi DSI SerDes to settings dialog

· added LVDS Info - added Pixelmode to all interfaces
Advanced:

· added capture from URL (UDP, RTP)
ScriptInterface:

· added bool Ethernet_Dlt_Config(u32_t txFifoId, u8_t spiA_nodeId, u8_t spi_slaveSelect, u16_t
readIntervalInMs, u8_t dltSourceType, u8_t dltSendMode);

· added bool Ethernet_Dlt_Start();

· added bool Ethernet_Dlt_Stop();

· added Ethernet_Dlt_Property_GetById

· added Ethernet_Dlt_Property_SetById

· added optional portHandle to DLT functions

· added SPI Monitor to script

· added APIX Lockstate command with and without portHandle

· added Ethernet_Dlt_SendMessage
Bugfix:

· memory leak displayBufferAdv at Bayer colormode

· Pixelmode settings for VD1

· pixel mode handling in grabber dialog

New Release 1.964

New features:

· IO-routing dialog: added Trigger sources/targets for I2C slave

· Settingsdialog: added I2C Slave settings, added to config file (DS only, API later)

· I2C side band dialog: update G_Lvds_DataRegisterReadWithSTOP also for 16bit register address width

· Side band dialog - added DataMode selection

· Settings dialog: added apply GMSL2 Register settings to apply (SerDesConfig), DS only - API later

Advanced:

· generator settings: added timing adjustment for internal mode, later planned for advanced

ScriptInterface:

· added Lvds_Common_Data_I2cTransfer(QStringList TxData, u8_t SendStartMask, u8_t NumberOfRxBytes)

Bugfix:

· I2C side band dialog, writing more than 1 byte.

· script: DisplayLocalFile_Adv crash if show=true

New Release 1.942

Dragon Suite 7

New features:

· Framgrabbersettings: added TransferMode to channelsettings

· RxTx Loop config parameter in gen/grab config dialog

· Lvds Info - added Pll enable Info for DS90UB988

· Lvds Info - Transfermode for generator

· update to API 2.2.9855 RxTx Loop in config file

· Framegrabber -> DMA Multichannel support with automatic channel selection

· IP Info Dialog: added I2C Slave capability
Advanced:

· TCP automation - added tray icon for hidden server mode
ScriptInterface:

· added Lvds_FrameGenerator_RxTxLoop_Config

· added G.Lvds_FrameGrabber_Oldi_Pll_enable_Get() + G.Lvds_FrameGrabber_Oldi_Pll_enable_Set(bool
enable)

· added Lvds_FrameGenerator_MIPI_CONT_CLK_Get/Set for CSI and DSI generator

· added Script command to clearScriptOutput
Bugfix:

· Framegenerator -> Bugfix generate images with odd resolutions

· I2C Dialog - ReadModWrite at 8 bit address width

New Release 1.922

New features:

· FramegeneratorSettings -> added start button to start the generator without setting die display parameter

· FramegeneratorSettings -> added SerdesConfig for GMSL2 chips - import csv config from MAXIM GUI (not saved
to config file and applied yet)

· FramegeneratorSettings -> gmsl Registertable -> export to I2C config file (new version with mask)

· SidbandDialog->I2C added Mask+Comment, readModifyWrite possible (8 bit reg value)

· SidbandDialog->I2C -> combine successive I2C registers for writing (increase performance also for scripting)

· new gconf since this version (Version 3)!!!
Advanced:

· FrameGeneratorDialog-> added Colorformat BAYER_GB, BAYER_GR to DisplayBufferAdv and Dialog
ScriptInterface:

· added Lvds_FrameGenerator_CSI2_Cfg_Num_Lanes_Get + Set

· added u32_t Common_ShellExecuteEx(QString path,u16_t timeout,u8_t windowMode, bool asAdmin) - waits
until the application finished or timeout

· added Lvds_SerDes_Interface_CfgNumLanes_Get/Set generic for Gen/Grab and CSI/DSI/OLDI

· added Lvds_Apix_SerDes_State_Get() to get Apix State Pin 1+2
Bugfix:

· FrameGeneratorSettingsDialog Videosettings VD1

· IO Dialog-> select trigger connection, show connection details

· delay in Script idle CPU load

· lineTime_Get

· LVDS Info for 4xMAX9295

· captureDialog resolution not divisible by 4

· settingsdialog, generator dialog minimum size adjustments

New Release 1.902

New features:

Dragon Suite 8

· added IP Info Dialog for VD2's
Skriptinterface:

· added Can_CyclicMsgs_Ramp_Define + Can_CyclicMsgs_Ramp_Delete

· added Lvds_Apix3_Phy_State_Save

· added Lvds_Apix3_Phy_Registers_Set for fast startup APIX3 config
Bugfix:

· CAN Monitor sort

· Import old generator config file (V1.0)

· Script: G.delay -> waits µs

Based on G-API 2.2.9519

New Release 1.892

New features:

· LvdsInfo: added - GMSL2 Linkspeed for MAX9295/96

· LvdsInfo: added - OLDI_speed for DS90UB947

· LvdsInfo: added status LED's for Video Tx Pixelclock also for pipe Y U H (MAX9295 only)

· Trigger Settings ->added control to set SerDesGPio_out

· added Serializer 96793

· GrabberDialog - added loading DAT files
Advanced:

· GrabberDialog : dialog/script add color tolerance for compare function similar to 4121

· GeneratorDialog: added companding for color format BAYER_BG_20To12Bit_Comp(20),
BAYER_RG_20To12Bit_Comp(20)

· GeneratorDialog-> added color format YUV_YUYV+ YUV_UYVY @16 bit pixel mode

· GeneratorDialog-> added YUV_8bit for pixel mode raw12 and raw8

· GeneratorDialog-> added color format Bayer_RG, Grey_8, Grey_12

· GrabberDialog -> added new color format raw10 -> grey10
Skriptinterface:

· added G.Lvds_DisplayColorAdv(u32_t width, u32_t height,u8_t colorFormat,u8_t pixelmode, QList<u8_t>
color) to use displayColor also for Pixelmode raw 8/12/16 in Bayer_BG format

· added G.sendJsonStringToClient(QString JSONString) - sends a JSON Sting as SIGNAL. e.g. to forward to TCP
connection or other application .

· added G.Lvds_FrameGrabber_Capture_Get_FrameCounter(u8_t portHandle, u8_t channel);

· added G.LLvds_FrameGrabber_Capture_Get_FrameCounter(u8_t channel);

· added G.LLvds_FrameGrabber_Capture_Get_FrameCounter(QString InterfaceName, u8_t channel);

· added G.Lvds_SetCompandingPoints([x,y,x1,x1....xn,yn])
Bugfix:

· GeneratorDialogr: optimized generator 12 bit BayerPattern (normalized to 12 bit)

· GeneratorSettingsDialog Bugfix oldi generaror

· settings:skip reading/writing MiMfp+SerDesGpio if not adavanced

· GrabberDialog ->Speichern von Bilder mit BGR Swap nach Single shot

· GrabberDialog ->CaptureDialog > show in new window BGR swap

· GrabberDialog -> remember last selected color format

· Bugfix UART Monitor 2nd Instance

Dragon Suite 9

New Release 1.849

New features:

· Framegenerator Dialog: Increased resolution for display file and display color to 8192x8192

· Framegenerator settings: enabled set/get for pixelmode
Advanced:

· added G.Lvds_APIX3_BstBwModeSet(speed)) ;/* set bwSpeed 1=1,5 ; 2=3Gbit/2 ; 3=6Gbit/s*/ on FPGA Level
interim

· G.Lvds_APIX3_BstBwModeGet()); //reads Deserializer Register

· Framegenerator: generate Bayer_BG for pixelmode Raw12 and raw16 on VD2
Bugfix:

· Bugfix Select png in display local file filedialog

Release 1.840

New features:

· new Help files with change log
Advanced:

· Script addedCommon_ShellExecute(QString path,u8_t windowMode, bool asAdmin); to execute an external
application

Bugfix:

· Lvds_FrameGenerator_CSI_Dt_Get disabled for VD1

· generator settings Bugfix Host DeviceType while loading

· load generator settings from file

· description for overloaded functions

· ScriptInterface - Lvds_Common_Data_Register_Write

Release 1.826

New features:

· Settings: Generator configuration

· Generator Settings -> added channels settings DT/pixelmode settings for CSI, DSI and OLDI limited to one
channel for now

· LVDS Info -> added Generator Framecounter total

· added Type G_LVDS__COMMON__SER_DES__DS90UB971 + 981

· Framegenerator dialog -> disabled Display File for VD2, will not be implemented to firmware

· added Sequence dialog - basic functions on right mouse menu

· added UserCode dialog - basic functions on right mouse menu

· added Ethernet dialog with MIMUX Gui

Advanced:

· Script: added Lvds_FrameGenerator_CSI_Dt_Get/Set

· G.Lvds_FrameGenerator_Simulation_Event_Control_Event1_enable_lowlevel(bool); //FPGA based

· G.Lvds_FrameGenerator_Simulation_Frame_Counter_Control_FC_reset_lowlevel(); //FPGA based

· G.Lvds_FrameGenerator_Simulation_Frame_Counter_Control_FC_enable_lowlevel(bool); //FPGA based

· G.Lvds_Common_VideoOutputAutoReSync_Request_lowlevel(). //FPGA based

· G.Sequence_Replay_AutoPlayByInput_FileName_Set(u8_t index, QString filename);

· G.Sequence_Replay_AutoPlayByInput_FileName_Get(u8_t index);

· G.Sequence_Replay_AutoStartSequenceHandleGet(u32_t *seqHandle);

Dragon Suite 10

· Monitor dialog: added menu to select a type (CAN;SPI, UART)

Bugfix:

· Guiless: bugfix Syncscan

· Framegrabber: bugfix Compare 30bit images

· removed auto set datamode on combobox change

· Settings dialog: bugfix APIX mode

· FrameGenerator configuration -> added Lvds_Generator_ChGenEnReq(0,false); to stop the generator pipe for
channel 0

· Generator Settings: apply HFrontPorch

· Settings -> bugfix load/save/show apix register comments

Release 1.801

New features:

· support save 30 bit image as 48 bit Tiff or png

· GrabberConfig -> re-added OLDI DT settings

· CAN Dialog: added AnalyzerMode/blinking Flag to Init

· CAN Dialog: added VBat enable

· CAN Dialog: added BusTermianttion enable

Advanced:

· UART Monitor

· allow 2 Framegrabber windows

Bugfix:

· Lvds_Capture in Script and dll crashed

· Framegrabber BugFix save image as .dat also for 30 bit

Release 1.789

New features:

· DragonSuite Plugin Support V1

· FramegrabberDialog added auto configure LVDS channel box

· Dragon Suite Plugin Template V1

Advanced:

· SPI MonitorDialog -> added SSIdleTime to settings to Gui

Script:

· ScriptInterface G.GetFeatures("00000000-00000000-00000000-00000000") to decode the HW Featurecode

· added check LED, use for led recognition at an captured image

· added: G.Lvds_Gen_MipiDsi_Loop_Config_Set(u32_t Flags /* int Enable 0x1 ;ScanEnable 0x2*/, VcId, Dt,
SyncMode,HResInPixels, VResInPixels, LineTimeInNs, HSyncWidthInNs, HBackPorchInNs, VFrontPorchInLines,
VSyncWidthInLines, VBackPorchInLines, StartWaitTimeInNs)
G.Lvds_Gen_MipiDsi_Loop_Config_Get()
G.Lvds_Gen_MipiDsi_Loop_StartStop(true); //start
G.Lvds_Gen_MipiDsi_Loop_ScanData_Get();
G.Lvds_Gen_MipiDsi_Loop_ScanData_Reset();
G.Lvds_Gen_MipiDsi_Loop_StartStop(false) //stop
G.Lvds_Gen_MipiDsi_Loop_Reset();

Dragon Suite 11

Bugfix:

· adjustment readGMSL2 states for MAX96714

· LVDS Info adjustments for different channel configurations

· Bugfix channelsettings grabber config

Release 1.771

New features:

· LVDSInfo: Now checks Datamode before reading SerDes status register

· Pattgen removed auto initalisation

· Pattgen added staus red for not initialized

· Pattgen adden LineCmdEnable

· added -GlobalI2CDelay set/get to console

Advanced:

· SPI Monitor -> Monitor two channels in parallel (one log)

· Grabber -> new colorformat-pixelmolde combo: PIXEL_MODE__RAW8 as grey, RAW12_MIPI_CSI2 as 8 bit grey,
RAW16_MIPI_CSI2 as 8 bit grey

· Grabber -> new colorformat-pixelmolde combo: PIXEL_MODE__RAW16 as 24bit BG0

Script:

· added bool Lvds_ShowLastCapturedImage();

· added Lvds_ShowLastComparedImage();

· added Lvds_SaveLastCapturedImage(QString path);

· added Lvds_SaveLastComparedImage(QString path);

· added -GlobalI2CDelay set/get to script

· AdvancedDll:*

· Adv_LVDS_SaveLastCapturedImage(u32_t instance,const char * const filePath); //extension bmp,png,jpg or
pgm

· Adv_Lvds_Capture(u32_t instance, u16_t width, u16_t height,u8_t colorFomat); // optional with color
conversion

· Adv_Lvds_CompareCapturedImage(u32_t instance, u16_t compareArea4, //[x,y,with,heigh],u32_t
*nmbOffDifferrentPixels);

Bugfix:

· PattGen MinValue height.

Release 1.758

New features:

· added "*wait:" option for each line to communication dialog in UART section

· added writeUartFromFile to CommandLine (LVDS and IO)

· Pattgen Dialog-> increased max for width and height to 21000

Advanced:

· added "G.Lvds_FrameGrabber_SyncInfo()_ " to scriptinterface ; Returns a StringList of sync values for different
kinds of ifTypes

· added writeUartFromFile to Script

· GrabberDialog -> Compare Support for VD2 (without color tolerance)
AdvancedDll: * added load ReferenceFromFile, * captureAndCompare * SaveLastComparedImage

https://ticket.goepel.com/projects/lvds-suite/news#fn4

Dragon Suite 12

Bugfix:

· bugfix Capture Area Settings VD1

· bugfix DRS over config by struct

Release 1.752

New features:

· GrabberDialog -> Support for RGB101010

· added DT comboBox for OLDI IfType

· IO Trigger Dialog added status box for MiMfPs

· IO Triggert Dialog -> SerDes GPIO 0-4 Get values

Advanced:

· added PIN_CONFIG__FLAG__SAVE_PIN to MimfpConfig Config Dialog

· Script: updatet Can_SendSingleCANMessage for CAN-FD

· added Lvds_Common_DSI_Loop_Config_lowlevel();

· added Lvds_Common_DSI_Loop_StartStop_lowlevel to script

· added ReSync for DSI Loop

Bugfix:

· Lvds_Get/Set_BUS_WIDTH_SELECTPropValue

Release 1.735

New features:

· added apply DRS Button to config Dialog

· enabled pattgen/generrator switch in framegeneratordialog for VD2

· ResetDevice -> Do not switch to Bootloader if USB connection ! (interim until new USB Bootloader)

· Grabber Settings channel config for up to 4 lvds channels

Advanced:

· added Can_Node_BusTermination_Enable to ScriptInterface

· added Lvds_Apix3_Phy_Reset();

· diag some commands to ScriptInterface

Bugfix:

· Read APIX3 Register Page8

G-API 2.1.8844 required

Release 1.720

New features:

· added channel enable for OLDI grabber

· added Maxim DRS Settings to config dialog and Script

· added UART_RX/TX to TriggerConfig basicCON4121

· added io_uart_fifo read/write to side band dialog

· changed decoding for YUV at RAW16 and YUV8 pixelmode YUYV <>UYVY

· Added some information to LVDS Info for generators

Dragon Suite 13

Advanced:

· SerDesGpio + MiMfP widget added new col to activate the saving for this config

· added Lvds_Frame_Generator_If_InterfaceEnable_Set(true)

· added Lvds_Frame_Generator_If_InterfaceEnable_Set(u8_t enable);

· Lvds_Frame_Generator_If_InterfaceEnable_Get to SkriptInterface

· added io_uart_fifo functions to script

· add function to apply PattgenConfing after executing configbyFileAdv

Bugfix:

· Bux fix Display in new window single shot BGR swap

· Bugfix Patterngenerator Display settings

· Bugfix LVDS Info SyncWidthV for VD1 SyncScn always on

· added Lvds_FrameGenerator_OpenLDI_Loop_Set true if muxSource pass through && OLDI

Release 1,674

New features:

· 947/948, 988 Support for VD2

· added pixelclock to OLDI LVDSInfo

· LVDS Info added SyncScan values for openLDI If Type

· ConfigureByBinary (gconf) //Version 2-> checkSum over Serials + I2C sideband

Advanced:

· added get CoreTemp to Scripting

· added YUV422_UYVY + YUV422_10_UYVY to colorformats

· Script Interface MII Erweiterunge (UDP. TxRx Fifo)

· added convertRawVideoToAvi to Scripinterface and Grabberdialog

· added autoinc filename to raw data recording

· added AShell read/write to communication dialog

Bugfix:

· removed Sleep(0) for I2C writing

· bgr swap in external grabber window

· Settingsdialog Bugfix load MiMfPConfig from File

· Settings Dialog Fullscreen fixed

Release 1.629

New features:

· SettingsDialog ->SerDes -> Import für APIX3 Config aus Inova Tool + Speicherung in Config xml

· SettingsDialog -> Framegeneratorquelle -> pass Through -> Generator_If_RemoveBlanking auto aktiviert

· SettingsDialog -> APIX Mode Umschaltung für VD2

· APIX Mode in LVDS Info

· speichern/laden von MII-mux Settings in Konfigfile

· Flash Firmware über Dragon Suite (im Device Baum)

· IO Trigger Settings starts counting at ZERO !

Advanced:

· added r/w Indigo Tab in Seitenband Dialog

Dragon Suite 14

· Skriptbefehl (get/set) für Generator_If_HsBurstEnable + Generator_If_RemoveBlanking

Bugfixes:

· recording in DMA Mode

· Erzeugung Scriptkommando für Mi_Mfp_Config

Release 1.611

New features:

· LvdsMuxSourceSwitch in FramegeneratorSettings und Script.

· LvdsMuxSourceSwitch Settings im ConfigFile

· DSI SyncInfo in LVDS Info

Advanced:

· Framegrabber ->Avi recording für YUV 10 bit, Grey 12 bit

· ScriptInterface -> CSI/DSI InterfaceScan

· ScriptInterface öffnen von 2 Instanzen möglich

Bugfixes:

· Avi recording

Release 1.601

New features:

· Framegrabbersettings -> weitere CSI Datentypen einstellbar (raw6,7,14)

· Framegrabbersettings -> Handling für DSI Dt's

· Comunication Dialog vergrößerbar

Advanced:

· Framegrabber ->Bayer RG support

Bugfixes:

· Bugfix GetCapturearea

· ignore wheelEvent für comboBox in mfp+serdesGPIO Dialog

Release 1.596

New features:

· unterstützt neue Pixelmodes RAW10_MIPI_CSI2 und YUV422_10_MIPI_CSI2

· FramegrabberDialog: decoding Bayerpattern im Pixelmode RAW10_MIPI_CSI2

· FramegrabberDialog: decoding YUV422 im Pixelmode 24 bit und YUV422_10_MIPI_CSI2

· Mainwindow: Untermenüpunkt zum Abschalten der Fehlerausgabe

· Skript und Kommandozeile: neuer CustomType zum Auslesen der Teilenummer der SVC220

G-API 1.4.8236 recommended und enthalten.

Advanced:

· FramegrabberDialog: neuer Farbformatyp YUV 10bit -> angezeigt wird aber immer RGB888 basierend auf 8 bit
Decoding.

· unterstützt für Pixelmode 24 bit und YUV422_10_MIPI_CSI2
Bugfixes:

· unknown iftype im Devicescan

Dragon Suite 15

· Mainwindow: Fehlermeldungsanzeige

Release 1.587

New features:

· Patterngeneratordialog in Framegenerator Dialog

· added LVDS Info menuitem to Interfacelist menu for LVDS interfaces

· Side band Dialog -> Read I2C registers allow to read up to 0xFFFF number of registers instead of 0xFF

· G-API 1.4.7787 recommended

Advanced:

· Patterngeneratordialog advanced load/save reference template

· Scriptng: Adv_Script_EnableMessageLogging & Adv_Script_SaveLoggedMessagesToFile

· Added some sample scripts

New Advanced-dll * added Scriptexecution

Bugfixes:

Release 1.565

New features:

· Goepel splashScreen

· LVDSInfo new features for MAX9295-96

· LVDSInfo: APIX3 link state (by lowlevel FPGA read)

· save/load SerDesGpioConfig/Mi-Mfp-Config to/from config file

· Mii multiplexer config in settings dialog

· PXI6222/GCAR6222 support

· G-API 1.4.7760 recommended

Advanced:

· Script: pattern generator config

· Script: Apix3 config register read/write

· Script: Lowlevel SerDes_Reset command for Scripting

· Script: Mii multiplexer commands

· Script: added subscript execution in main thread

· Script: added local paths for config and subscripts, relative to scriptpath

Bugfixes:

· some adaptions for Linux

· IO Dialog crash in not advanced mode

Release 1.539

New features:

· Io-trigger-dialog -> get/set dio + software in/out

· Settingsdialog -> configuration history on LoadButton

· save/load Io-Trigger configuration to/from config-xml-file

· Change OpenCV to 348

· added digital IO's to IO Dialog (get/set digital io & relais)

Dragon Suite 16

Advanced:

· context help for script dialog

· unlock ADV by hardware lock code

· 30 day's demo license possible

· SPI monitor

· CAN monitor

Bugfixes:

· (Advanced) Raw Date Recording -> Rawfile Header changed to 64 bit aligned

· Framegrabbersettings -> read SerDes Vector

· supress some Errors with latest Firmware and unsupportet properties

Release 1.495

New features:

· FrameGrabberDialog: Umstellung DMA capturing direkt

· Bugfixes LVDS Info

· Bugfix YUV->RGB in RAW16

· CustomReadSerialNumber für Skript und Konsole zu auslesen der Seriennummer der SVC220 Kamera (offiziell
nicht dokumentiert)

Advanced:

· Skript Dialog permanent in GUI, zur Ausführung Freischaltung erforderlich

· FrameGrabberDialog, capturing & replay von Rohdaten von 2 LVDS Kanälen (gleiches Interface)

Release 1.485

New features:

· Capturen über DMA möglich, stabil bis 4K@34fps Videos getestet

· LVDS Info Erweiterung für MIPI-CSI2 Grabber

· Settingsdialog: Applyknopf für Seitenbandsettings

· DS90UB940 Erkennung

· CaptureToFile für Kommandozeile inkl. Farbkonvertierung

· bugfixes

Advanced:

Release 1.459

New features:

· 32 bit und 64 bit Version verfügbar

· Upgrade auf QT 5.12.3 und OPENCV 4.1 (64 bit)

· Speicherung der Channel Informationen und "UART passthrough switch" im XML File

· bugfixes

Advanced:

· raw Dekodierung eine Graubildes + Videoaufnahme

· Lvds_Common_Data_Register_Write für Skriptmodul

Dragon Suite 17

Release 1.440

New features:

· IO Dialog for Trigger and SerDes GPIO Configuration

· CAN Dialog for CAN-UART configuration

· Lvds_FrameGrabber_CaptureToFile ->changed mode to MODE__BMP__BOTTOM_UP

· startCapturing command added to commandline

Release 1.406

New features:

· LVDS channel settings (MIPI CSI2)

· side band pass through switch for MAX9276

· save single shot image as *.dat (raw data)

Dragon Suite 18

3 Documentation History

Date Editor Rev. Comment

2022-01-18 E.Richter 2.0.0 Document created in HelpNDoc

2022-01-20 E.Richter 2.0.1 Changed image sizes

2022-01-21 E.Richter 2.0.2 Changed image sizes
Added Change Log

2022-01-31 E.Richter 2.0.3 Added Sequence Interface
Added LVDS Channels for Frame Generator

2022-02-03 E.Richter 2.0.4 Layout changes
Added MiMfp Config Tab

2022-03-03 E.Richter 2.0.5 Added Open LDI Mode
Changed Frame Generator "Files on Device" to "only for basicCON 4121"
Added chapter SerDes GPIO in IO Trigger

2022-04-26 E.Richter 2.0.6 Added Release Notes in Change Log
Added chapter Additional Features

2022-12-05 E. Richter 2.0.7 Added some changes for Sequence Interface

2023-02-15 E. Richter 2.0.8 Added info box for 16 bit register in chapter I²C (chapter 11.9.2)
Added maximum bytes for transmitting/ receiving I²C (chapter 11.2.1.2)
Added RxTx Loop for Gen/Grb LVDS Channels
Added Color Format to Frame Generator Dialog Window: Display Direct
Added Transfer Mode to Generator LVDS Info
Added Tray mode for TCP Automation
Added Start / Stop buttons to Generator Settings
Added import APIX & GMSL register import to SerDes Config
Added Mask and Command to I²C write table; added Group Mode to I²C
command

2023-04-26 E. Richter 2.0.9 Added I²C Slave configuration
Added the Media Interface Boards, for which the Sideband Pass Through mode is
now available.

2023-06-01 E. Richter 2.0.10 Added I²C transfer command

2023-10-09 E. Richter 2.0.11 Removed chapter DMA Configuration

2024-02-26 E. Richter 2.0.12 Added missing line in header structure in chapter Raw Data Recording
Added new Pixel Modes
Documentary changes in Compare Settings for Frame Grabber Dialow Window

Dragon Suite 19

4 Introduction

The Dragon Suite software provides a complete tool to configure the Video Dragon .

The Dragon Suitesoftware consists of the following features:

· Configure the Frame Grabber and capture images and videos.
· Configure the Frame Generator and generate images and videos.
· Sidebandcommunication, to communicate with devices, connected to the LVDS network.
· File System functions to use the Video Dragon file system.
· IO functions to use the Video Dragon IO interface and IO trigger matrix.
· CAN functions to use the Video Dragon CAN interface.
· The ability to use the Command Line Interface or write whole execution scripts to simplify the handling.

This documentation gives a short overview of the Video Dragon features. For hardware operation, please refer to the
respective user manual.

4.1 Symbols

This guide highlights some important comments as follows:

Symbol Description
Warning that indicates risk situations and dangers. Disregard can lead to life-threatening situations or
destruction of components.

Information that indicates certain aspects or is important for a particular topic or goal.

Tip that gives useful hints or recommendations.

4.2 Liability and Warranty Exclusion

This software is designed to simplify the use of our API in conjunction with our Video Dragon hardware. We do not
guarantee stability, security and usability, especially when used in manufacturing processes (e.g. end-of-line). In no
event shall GÖPEL electronic be responsible for any direct, indirect, incidental, special, exemplary, or consequential
damages (including but not limited to the purchase of replacement goods or services, loss of use, loss of data or profit,
breakdowns, injury, or potential death) in any way in the case of improper use of the Dragon Suite.

Dragon Suite 20

5 Installation

5.1 Supported Hardware

Supported hardware devices from GÖPEL electronic are:

· basicCON 4121
· Video Dragon 6222

5.2 Prerequisites

5.2.1 System Requirements

Dragon Suite is a software for Microsoft Windows operation systems. Your system must comply with the following
requirements:

· CPU with at least 4 cores, 8 cores recommended at 2,9 GHz
· Windows 7 or later (only 64 bit)
· At least 200MB of free disk space
· At least 8GB RAM
· Installed G-API version 1.4.6325 or higher (see G-API Manual for reference)

5.2.2 Hardware Installation

For hardware installation please follow the steps in the hardware manual of the corresponding LVDS device.

5.3 Software Installation

The Dragon Suite comes with a setup wizard that
guides you through the installation procedure.
Make sure that your system meets the system
requirements.
Download the Windows installer and start the
execution file. Validate the integrity of the file if
necessary and run the installer by following the
instructions in the installation program.

Dragon Suite 21

While installation you need to select the
components you want to install.
· Dragon Suite always needs to be selected.
· It is indispensable having installed the G-API

for using the Dragon Suite. If it is not installed
yet, select this component.

· Select the K-Lite Codec Pack if playing videos
in the Dragon Suite is desired.

5.4 Update Manager

The software can independently search for updates online at the GÖPEL electronic service homepage
https://genesis.goepel.com.

A working internet connection is necessary for executing automatic updates.

To check for updates, use the Help menu in the software's menu bar. Use the option Update () and the software
checks if an update is available.

In case no update is available, a message appears in
the Message Box.

When a new Dragon Suite version is available, a small
window appears asking if you want to update now or
not. Click Yes to close the application and start the
update. Select No if you do not want to close the
application, and then run the update later.

When you start the installation, a window opens
with options for adding or removing components
and for updating components.
Select the option update components and click
the Next-button.

genesis.goepel.com

Dragon Suite 22

In case an update is available, a checklist will be
displayed to choose the components that could
be updated. Select all components to be
updated.
Click the button Next to execute the update. After
the update, click Finish to exit the wizard.

Dragon Suite 23

6 Using the GUI

After starting the Dragon Suite the main window appears. The main window remains open during the entire runtime of
the software.

The Menu Bar

The Control Bar

The Interface Tree

The Main Frame

The Message Box

6.1 Menu Bar

Interfaces In this menu, you can update the interface list displayed in the Interface Tree. With Exit the software will be
closed.

Settings The Settings menu opens the Frame Generator or Frame Grabber settings window where various hard- and
software settings can be made.

Tools Use this menu to open the Frame Generator or Frame Grabber dialog window, the Sideband
communication window, the File System manager window, the IO dialog, the CAN dialog, the Sequence
Interface or the Monitor Interface.

Windows Hide or show the Interface Tree and the Message Box in this menu. Additionally use this menu to switch
between already opened Frame Generator or Frame Grabber windows in the Main Frame.

Help In the Help menu, use the option Help (F1) to open the Dragon Suite help window. The help window
contains the Dragon Suite manual with a simplified search function. There you can search for Contents or
by keywords in the Search tab. The option About (F12) opens a dialog box with information about the
Dragon Suite and how to contact GOEPEL electronics for support. Use the Update option to check if an
update is available.

Dragon Suite 24

6.2 Toolbar

Icon Description
Hide the Interface Tree (Ctrl + H).

Show the Interface Tree (Ctrl + H).

Refresh the Interface List shown in the Interface Tree (Ctrl + R).

Open the Frame Generator settings window (F2).

Open the Frame Grabber settings window (F3).

Open the Frame Generator dialog window (F4).

Open the Frame Grabber dialog window (F5).

Open the Sideband communication window (F6).

Open the File System manager window (F7).

Open the IO dialog window (F8).

Open the CAN dialog window.

Open the Sequence dialog window.

Open the Script Interface window.

Open the Monitor dialog window.

Close the Dragon Suite (Ctrl + Q).

Dragon Suite 25

Arrange the Toolbar elsewhere in the Main Window by
left-clicking the white dotted line and dragging it to the
desired position.

6.3 Interface Tree

In the Interface Tree all available interfaces of the
GÖPEL electronic devices are represented. Although
you can see all existing interfaces and devices, not all
are supported in the Dragon Suite. The interface
names are assigned through the Hardware Explorer
installed with the G-API. If a connected device does not
appear in the Interface Tree, first update the Hardware
Explorer. If this does not help, check the Hardware
Explorer preferences.
To hide the Interface Tree use the Menu Bar or the
Toolbar. Single devices can be hidden by clicking on
the small triangle symbol on the left side of the device
name.

Right-clicking on the LVDS device opens the submenu
with options for resetting the entire device or
displaying the unlocked features of the device.

Dragon Suite 26

Additionally, by right-clicking on the device and
selecting Show IP Features, the details of the device
and its interfaces can be viewed.

Right-clicking on the LVDS interface opens a small
submenu and offers four different options. The first
one is to reset the interface. Also you can open the
settings window or dialog window for either Frame
Generator or Frame Grabber, depending on the device.
Additionally there is the possibility to open the
Sideband communication window.
Any other interface can be reset by right-clicking on
the interface in the Interface Tree.

Dragon Suite 27

6.4 Main Frame

The settings and dialog windows are displayed in the Main Frame. This windows can be arranged arbitrarily. To work
with multiple windows, enlarge the Main Frame by left-clicking on the right edge of the Main Window and dragging it to
the right.

The windows can be minimized in the lower left corner of the Main Frame or maximized to fill the entire frame.

6.5 Message Box

The Message Box is used to display the log file, for example capturing information or error messages. If you right-click in
the message box, you can save or delete the log file.

Hide the Message Box using the Menu Bar.

By right clicking in the message box a small menu selection appears. The messages can be saved in a log file or copied
to the clipboard. Furthermore the logging of error messages can be switched off (uncheck the box). With Clear all
entries are deleted.

Dragon Suite 28

An overview of common mistakes can be found in chapter Common Error Messages.

Dragon Suite 29

7 Setting up the Frame Generator

Open the Frame Generator settings window by using one of the alternatives illustrated in chapter Using the GUI. The
settings window shows all supported device settings. Most of the functionalities of the Dragon Suite depend on valid
settings of the interface. Setting up the device should therefore be the first step after starting the software.

Generally parallel usage of several interfaces with the G-API is possible. But the Dragon Suite supports the
usage of only one Frame Generator interface at a time.

All available Frame Generator interfaces are listed
in the drop down menu. The currently selected
interface is shown in the text field of the drop
down menu.

On the left of the settings window are the following buttons:

Button Description
Load the current setting values of the selected interface.

Load the values for the selected interface by importing an external XML file. Importing a settings
file does not overwrites the current settings on the device. To overwrite the device settings, use
the Apply to HW button.

Save the current settings of the selected interface by exporting them to an external XML file.

Overwrite the current settings directly from the configuration file.

Overwrite all current settings on the device with the settings displayed on the tabs of the window.

Dragon Suite 30

A right click on the Load from file button opens
a selection of the last opened files. This facilitates
the search for frequently used configurations.
The history can be cleared with clear history.

7.1 General

Depending on the device used, a stored image can be
generated or the hardware itself generates an
individual pattern. Use the dropdown menu to select
the video source.

The general serializer settings for Video Source = Video Out are pixel clock, frame rate and image format parameters.
Image format parameters are described by the horizontal and vertical synchronization signals, indicated in clocks.
Horizontal synchronization means that the end of a single line is reached, whereas vertical synchronization indicates
the end of a complete frame.

Pixel clock Determines, how many pixels need to be sent per second.

Frame rate Sets the maximum rate for capturing frames in continuous mode.

Active area Size of desired file.

Front Porch Describes the duration between the frame end information and the signal pulse.

Sync Width Signal pulse. The vertical Sync Width unit is lines whereas the horizontal Sync Width unit is pixels.

Back Porch Interval between Sync Width and the beginning of frame information.

There is a dependency between pixel clock, frame rate and synchronization signal parameters, as follows:

Frame Rate [fps] = Pixel Clock [Hz] * 1000 / (hTotal * vTotal)

When changing one of the parameters, frame rate or pixel clock adapt oneself automatically in Dragon Suite.

Below the parameters are the following buttons:

Dragon Suite 31

Button Description
Apply the current settings.

Start generating.

Stop generating.

Changed values of pixel clock and frame rate are taken directly from the hardware, without having to use
the Apply to HW button.

Select Video Source = Video in to switch to Passthrough mode. The frame and sideband data from the input interface
are passed through to the output.

For Video Source = Pattern Generator Out please go to Pattern Generator chapter.

7.2 Signal Levels

The valid signal levels and edges are defined in the Signal Levels tab.

This parameters are only necessary for basicCON 4121.

Polarity Defines which signal level indicates vertical or horizontal synchronization.

Data Enable Specifies at which level pixel data is being transmitted.

Pixel Clock Polarity Describes at which edge of the pixel clock signal (rising or falling) the values of the signals are
to be sampled.

Lock Output Enable When this parameter is activated, LED 4 lights up for a successful lock.

Lock Polarity Determines whether the signal is high or low when a lock is detected.

Dragon Suite 32

7.3 Signal Routing

This functionality is only available for basicCON 4121.

Since there is no common standard for mapping the video signals to the 32 serialized bits in the LVDS video stream,
this assignment must be defined for each device. This can be done in the Signal Routing tab.

On the Signal Routing tab, you can specify the mapping of each serialized bit of the LVDS stream. Therefor the combo
boxes of the tab provide the option to set the color bits. Since the resulting RGB frame has a color depth of 24 bits,
each color (red, green and blue) has a maximum depth of 8 bits. The selection of the corresponding bit in the video
stream is made by selecting the correct value from the possibilities given by the combo box. All 32 bit of the stream and
the value not used can be selected. Not used means that the signal has no correspondent in the video stream. This
should be done, for example, if a video stream contains frames whose color depth is less than 24. The significance of
the color bits is ascending. For example, this means for an 8-bit color value of red, R0 is the least significant bit, and R7
is the most significant bit.

The combo boxes are also used to assign the control signals. The vertical sync signal VSync notifies the end of
transmission of a complete frame, whereas the horizontal sync signal HSync indicates the end of transmission of a line.
The third control signal is the Data Enable signal. In a continuous stream, the video signal may contain porches in
each single line and between the end and the beginning of a new frame. The data enable signal indicates whether pixel
data is currently being transmitted.

Dragon Suite 33

7.4 SerDes Config

This functionality is only available for all Media Interfaces of basicCON 4121 and APIX Media Interfaces of
Video Dragon 6222.

Dragon Suite gives the opportunity to configure the serializer / deserializer by manipulating the bus register.

Manual manipulating of the configuration data list needs an extreme good knowledge of the meaning of
each register value. This can only be obtained from the data sheets of the serializer / deserializer. Even a
single wrong setting of only one register may render the complete configuration invalid and the serializer /
deserializer inoperative.

To set up the serializer configuration, you must understand the structure of the configuration data: Each serializer /
deserializer stores its configuration in a set of one-byte register values that can be read from or written to the serializer /
deserializer. Some serializer / deserializer types group subsets of their registers to different internal devices, others have
only one internal device. The value can be presented as a decimal or hexadecimal value, which is selected by right-
clicking in the list.

To add a new row to the register list, right-click in the
list and select add row from the sub menu. A blank
row appears at the bottom of the list. To delete a single
row, right-click in the relevant row and select delete
row. It is also possible to delete all rows.

Dragon Suite 34

To read a register, double-click an
existing register address item and
change its value to the requested
register address. Loading the current
values updates the register data from
the specified address.
The register data can be changed by
double-clicking in the corresponding
entry and changing the value. The Apply
to HW button immediately overwrites
the current value in the serializer /
deserializer.

For Media Interface with APIX2 or APIX3
(Video Dragon 6222) the register
configuration can be loaded from a *.csv
file (generated with APICO tool).
To do this, right-click in the table and
select Import APIX config. Right-click
and select Apply Register config to
write the registers without reconfiguring
the entire Media Interface.

For Media Interface with GMSL2 or
GMSL3 (Video Dragon 6222) the register
configuration can be loaded from a *.csv
file (see also chapter I²C).
To do this, right-click in the table and
select Import GMSL register config.
Right-click and select Apply Register
config to write the registers without
reconfiguring the entire Media Interface.

Devices with an APIX Media Interface Board require a special configuration via an Apico file. This file can be
loaded via the Import Apico File button. The button can only be used with the appropriate Media Interfaces
and basicCON 4121.

Dragon Suite 35

7.5 External Board

This parameters are only necessary for basicCON 4121.

Different modes can be set for the various supported serializers. Depending on the currently selected LVDS interface,
only the corresponding setting options are available. Further information on the individual setting options can always
be found in the data sheet of the respective serializer.

If you set undefined in one of the settings, the device configuration is not taken into account.

EDID Loop Through Extended Display Identification Data (EDID) is a 128-byte data format for displays that
describes their capabilities, such as manufacturer, date of manufacturing or display size. This
parameter is only supported by ADV7611 (HDMI).
· No loop through (default): the EDID data of serdes extension board are used.
· Loop through enabled: the EDID data of output device is looped to input.

Maxim bus width select This parameter is only supported by MAX9260, MAX9272, MAX9276, MAX9259, MAX9271 and
MAX9275. It describes the data format of the device.
· 24 bit bus mode (default): the first 21 bits contain video data.
· 32 bit bus mode: the first 29 bits contain video data.
· High bandwidth mode (27bit; only supported by MAX9276 and MAX9275): the first 24 bits

contain video data or special control signal packets.
The last 3 bits always are the embedded audio channel bit, the forward control channel bit
and the parity bit of the serial word.

Maxim mode select This parameter is only supported by MAX9260, MAX9272, MAX9276, MAX9259, MAX9271 and
MAX9275. Two modes of control-channel operation are available for this device:
· Base mode (default): use either I²C (half-duplex) or GMSL UART protocol (full-duplex).
· Bypass bus mode: use a custom UART protocol.

Dragon Suite 36

Maxim DRS select This parameter is only supported by MAX9276 and MAX9275. There are two modes of
operation:
· DRS = low rate
· DRS = high rate (default)

APIX mode This parameter is only supported by INAP375T and INAP375R. The APIX functionality provides
a high-speed Gigabit video link in combination with full-duplex communication over two
wire pairs. There are two modes of operation:
· APIX1 mode
· APIX2 mode (default)

TI low frequency mode This parameter is only supported by DS90UB947 and DS90UB948.
· Normal mode (default)
· Low frequency mode enabled

TI LVDS link data
mapping

This parameter is only supported by DS90UB947 and DS90UB948. The device can be
configured to accept 24-bit color with two different mapping schemes:
· Mapping mode 0 (default): SPWG mapping.
· Mapping mode 1: OpenLDI mapping.

Transceiver power
down

This parameter is only supported by MAX9260, MAX9272, MAX9276 and DS90UB914. The
devices have a power-down mode which reduces power consumption:
· Transceiver is powered up (default).
· Transceiver is powered down.

Sideband pass through
mode

This parameter is supported only depending on the serializer used. The devices pass a
sideband command through to further sideband subscribers:
· disabled (default)
· I²C pass through (only for MAX9295/9296, DS90UB947/948 and DS90UB953/954)
· UART pass through (only for MAX9276 v1.1 and MAX9295/9296)

Dragon Suite 37

7.6 Sideband Settings

Different sideband communication modes can be set for the various supported serializers and deserializers. The Video
Dragon supports SPI, I²C and UART. Depending on the currently selected LVDS interface, Dragon Suite will provide only
the appropriate data mode options.

Detailed information about sideband can be found in the chapter Sideband Communication.

Data Modes are only available with activated sideband features.

The sideband settings can be set independently of all other parameters. Use the Apply button in the lower
right corner of the Settings window.

The following Data Modes are possible:

· I²C master to deserializer: Video Dragon is I²C master at deserializer IC.
· I²C master to serializer: Video Dragon is I²C master at serializer IC.
· SPI master to deserializer: Video Dragon is SPI master at deserializer IC.
· SPI master to serializer: Video Dragon is SPI master at serializer IC.
· SPI passthrough dual: Video Dragon is connected to transmitter and receiver in "dual mode".
· SPI receiver dual: Video Dragon is connected to receiver in "dual mode".
· UART to deserializer: Video Dragon is connected to UART interface of deserializer IC.
· UART to serializer: Video Dragon is connected to UART interface of serializer IC.
· SPI transmitter dual: Video Dragon is connected to transmitter in "dual mode".
· SPI slave to deserializer: Video Dragon is SPI slave at deserializer IC.
· SPI slave to serializer: Video Dragon is SPI slave at serializer IC.
· I²C slave to deserializer: Video Dragon is I²C slave at deserializer IC.
· I²C slave to serializer: Video Dragon is I²C slave at serializer IC.

Depending on the selected Data Mode, the sub-tab for the corresponding sideband is automatically opened.

Dragon Suite 38

7.6.1 UART

For UART mode the following parameters can be adapted:

· Baud rate (default value: 115200 baud): Sets the earliest possible value to this parameter.
· Parity (default value: no parity): Sets, if a parity will be build and transferred.

7.6.2 I²C

For I²C mode the following parameters can be adapted:

· I²C master baud rate (default value: 400kHz): Baud rate of I²C master can be 100kHz or 400kHz.
· I²C master clockstretching (default value: enable): Enables or disables the master response on the deferment of the

clock, organized by the slave.
· I²C master stop no acknowledge (default value: Do not send ACK after last byte): I²C master sends an acknowledge

or not after the last received byte from the slave.
· I²C slave baud rate (default value: 100kHz): Baud rate of I²C slave can be 100kHz or 400kHz.

I²C Slave

It is possible to simulate the response of an I²C slave to a master request. The I²C master first sends a request, for
example that it wants to read the data from address 0x21 of the slave. Then the master gives a clock and fetches the
response from the slave. See also the sections in chapter "Sideband Communication".

If the Data Mode I²C slave to Serializer or I²C slave to Deserializer is set, another input mask appears below.

Dragon Suite 39

In this mask the freely selectable Slave Device Address must be specified. In addition, the Register Address Width must
be set to 1 byte or 2 bytes.

If the Mapping Mode is not set, a confirmation is sent for each I²C address (MapCode). In this case Acknowledge all and
the mapping table are not relevant.
If Mapping Mode is set, the slave addresses can be defined individually in the table below. The FPGA then only
responds to the addresses defined in the mapping (MapCode). If the master requests an address that is not in the
MapCode and Acknowledge all is not set, "no Acknowledge" is returned.

In the mapping table the MapCode must be defined first. This can be for example a register address.
By right-clicking in the table you can add or delete rows.
A maximum of 32 MapCodes may be configured.

Memory Offset defines from which memory location should be read.
In Data you define which data (starting from Memory Offset) should be written into the FPGA memory. The length of
the data must also be added in the Data Length column.

The Slave Device Address and the Register Address width can only be initialized and reset. It is not yet possible to
get these parameters.
However, with the correct Slave Device Address the set mapping table can be read back. This is done by right-
clicking in the table and selecting Load Mapping from Device .

7.6.3 SPI

For SPI mode the following parameters can be adapted:

· SPI master CPHA (default value: data is valid at first clock edge after chip select): SPI clock phase - Valid data at first
respectively second clock edge after chip select.

· SPI master CPOL (default value: clock parity in idle state is low): SPI clock polarity in idle state.
· SPI master CS_mode (default value: chip select remains low (active) between consecutive bytes): SPI chip select

behavior between consecutive bytes of the same transfer.
· SPI master clock divider (default value: 0): determines SPI clock frequency based on freq. 25MHz.

o 0: divider is 1; clock frequency is 25MHz
o 1: divider is 2; clock frequency is 12.5MHz
o 2: divider is 3; clock frequency is 8.33MHz
o ...
o 255: divider is 256; clock frequency is 0.1953125MHz

· SPI slave CPHA (default value: data is valid at first clock edge after chip select): SPI clock phase - Valid data at first
respectively second clock edge after chip select.

· SPI slave CS idle [ns] (default value: 20): SPI chip select idle minimum in 20ns steps.
o 0: 127 * 20ns = 2.54µs chip select idle after transfer
o 1: 1 * 20ns = 20ns
o 2: 2 * 20ns = 40ns
o ...
o 255: 255 * 20ns = 5.1µs

Dragon Suite 40

7.7 LVDS Channels

Use this tab to configure the capture parameters for the individual channels of the Video Dragon. Currently the settings
for one channel (Channel 0) can be adjusted.

The following properties are only supported for Video Dragon 6222 with MIPI CSI-2 and OLDI virtual channel
extension. Not all Media Interface Boards support all parameters.

From Video Dragon 6222, several physical channels (Channel 0, Channel 1, etc.) lead to the PC. The number of virtual
channels depends on the Media Interface module used. Depending on the configuration, the virtual channels can go
through one of the physical channels.

Enable or disable the physical channel by checking the enable box. You can select the Pixel Mode and the Data Type
for each physical channel.

For the MIPI CSI-2 Data Type the following data formats are possible:

· RGB888
· RAW6
· RAW7
· RAW8
· RAW10
· RAW12
· RAW14
· YUV422 8bit
· YUV422 10 bit
· embedded data (raw data packet, not necessarily just video data)

For the OLDI Type the following data formats are possible:

· RGB 18 bit

Dragon Suite 41

· RGB 24 bit
· RGB 30 bit

For the Pixel Mode the following modes are possible:

Mode Description
24 bit BGR 24 bit BGR format with 3 bytes per pixel. Per byte one color channel is transmitted.

Byte 0: Blue (bit 7..0)
Byte 1: Green (bit 7..0)
Byte 2: Red (bit 7..0)

From the Virtual Channel drop-down menu, you can select the virtual channel to be routed to the appropriate physical
channel.

For the Transfer Mode the following data formats are possible:

· Generate
· RxTx Loop

Write the displayed settings in the window by clicking the Apply button. When you use this button, the settings of the
other tabs are not written to the device.

7.7.1 Open LDI Mode

This functionality is only supported for Video Dragon 6222.

For Media Interface boards with Open LDI serializers (e.g. DS90UB947 from TI) and deserializers there is the possibility to
work in single or dual pixel mode.

The image to be generated is broken down into individual pixels in the FPGA. From there, the data is sent to the
serializer. Since the serializer has two inputs for the data from the FPGA, the pixel stream from the FPGA is routed to two
data channels (dual pixel mode). These two data streams are then also routed to two channels at the output of the
serializer and accordingly received and processed by the counterpart (deserializer).

If the remote station has only one channel, the serializer must operate in single mode. Otherwise, some of the pixels will
be lost and there will be an incorrect image or no lock at all.
To generate in single mode, two steps must be performed:

1. The FPGA must be configured to give the pixels only to one Open LDI input of the serializer. This is done via the
configuration and can be set in the Dragon Suite by selecting the Open LDI Mode.

2. The serializer must also be set to single mode. This is done by setting the register via the I²C communication. Which
register has to be set depends on the used circuit.
In the DS90UB947 circuit, for example, register 0x4F is responsible for the Open LDI mode.

Dragon Suite 42

7.7.2 RxTx Loop

This segment is described in the Frame Grabber settings.

7.8 IO Routing

The GÖPEL electronic Video Dragon has an IO trigger function with which certain events can be routed to a trigger
event. The routing can be defined in the IO Trigger Dialog window. The defined connections can also be found in the IO
Routing tab of the Settings window for an easier overview.

The channel entries of the connection table can be changed manually by clicking on the desired field and editing the
value. Use the Apply button to set the values. Use the Refresh button to load the actual settings.

7.9 Ethernet

The Ethernet tab supports the MII Multiplexer functionality (Media Independent Interface Multiplexer). With the MII
Multiplexer you can establish connections between different communication sources and destinations directly on the
device.

Depending on the selected interface the corresponding sources and targets are available. Which ones are available can
be seen in the graphic, which is automatically displayed in the tab.

Regarding LVDS devices, this feature is only supported for Media Interface boards with APIX MII function
(Currently these are the boards INAP562T and INAP562R).

Dragon Suite 43

Using the switches of the MII multiplexer, data can be routed from APIX Rx to APIX Tx (Phy) and/or to the MAC of the
firmware for instance. The APIX IC has two A-Shell channels. In the INAP562T, both A-Shell channels are routed out as
MII (Tx). With the INAP562R only one (Rx) is routed out. All MIIs are bidirectional.

All possible PHY Rx and MAC Tx instances can be routet to an input of the switch and all PHY Tx and MAC Rx instances
can be routet to the output. The possible sources and targets are listed in the drop-down lists. With the help of the
graphic the correct instance can be specified in the input field below the dropdown list. All incoming packets of the
switch are routed to the switch output. The priority is indicated by the number of the input. So Switch Input0 has the
highest priority and Switch Input2 the lowest.

This priority distribution is only valid for the APIX interface. This is not the case for other GÖPEL electronic
devices with MII Multiplexer.

In the middle of the dialog window there are three buttons:

Button Description
Load the current MII Multiplexer setting values of the selected interface.

Overwrite all current MII Multiplexer settings on the device with the settings displayed on the tabs of
the window.

Reset all MII Multiplexer settings of the selected interface.

The defined connections can be found in the connection table below the graphic. The channel entries of the
connection table can be changed manually by clicking on the desired field and editing the value. Use the Apply button
to set the values. Use the Refresh button to load the actual settings.

Dragon Suite 44

7.9.1 Example

This is a short example of pass-through of data from APIX Rx-A0 to APIX Tx-A0. Instance 2 of Phy_Rx needs to be routet
to Instance 3 of Phy_Tx. The other way around Instance 3 of Phy_Rx needs to be routet to Instance 2 of Phy_Tx.

Dragon Suite 45

7.10 LVDS Info

The Frame Generator LVDS Info window for the selected interface can be opened with the icon ()(ALT + 6).

The device information contains:

· SerDes Type: The type of the serializer mounted on the currently installed extension board of the LVDS device.
· Device Type: The type of the LVDS device.
· Firmware Version: The firmware version running on the device.
· Hardware Version: The hardware revision number.
· Serial Number: The serial number of the LVDS device.
· VHDL Version: The version number of the VHDL design of the FPGA device.
· SerDes Interface Type: Serializer interface used

The LVDS information contains information about the current video stream:

· LVDS Channel: Select the LVDS Channel. (only supported for Video Dragon 6222).

Dragon Suite 46

· Horizontal Resolution: Number of horizontal pixel clock cycles where the Data Enable signal is active. The value
corresponds to the horizontal resolution of the image source.

· Vertical Resolution: Number of vertical pixel clock cycles where the Data Enable signal is active. The value
corresponds to the vertical resolution of the image source.

· Lock: Indicates whether the deserializer is synchronous to the LVDS bit stream. (only for supporting Media Interface
Boards).

· PixelClock: Frequency of pixel clock in kHz.
· SyncPeriodH: Absolute number of pixel clock cycles between two horizontal synchronization edges.
· SyncPeriodV: Absolute number of pixel clock cycles between two vertical synchronization edges.
· SyncWidthH: Number of pixel clock cycles during the horizontal synchronization is active. The value corresponds

to the Horizontal Sync Width of the image source.
· SyncWidthV: Number of pixel clock cycles during the vertical synchronization is active. The value corresponds to

the product of the total horizontal active area hTotal and the Vertical Sync Width of the image source.
· Generator Output Source: Video Source set
· Transfer mode: Mode, how the data is transferred (Possible modes: Command-Response mode, DMA mode)
· Frame Generator total frame count: Number of frames sent since last initialization

Dragon Suite 47

8 Frame Generator Dialog Window

Open the Frame Generator dialog window with one of the alternatives illustrated in chapter Using the GUI. The dialog
window has four segments that allow you to manage the files on the device and view the frames.

The Files on Device overview

The Display Color box

The Display Direct box

The Video Preview

All available Frame Generator interfaces are listed
in the drop down menu. The currently selected
interface is shown in the text field of the drop
down menu.

When working with Video Dragon 6222 use the button to switch between Files on Device and Pattern
Generator.

Dragon Suite 48

8.1 Files on the Device

This dialog segment displays the files stored on the device and has several buttons to manage them.

This functionality is only available for basicCON 4121.

The table lists all files stored in the internal Frame
Generator memory. Each file has a file number (ID)
that starts with 0. When you upload a new file, it gets
the lowest vacant ID. Next to the ID, the table displays
the width and height of the stored images in pixels, the
bit depth in bits and the file size in kilobytes. To select
a file, left-click in the list. The file is highlighted in the
list and the image is also displayed in the preview
segment.

On the right side of the segment are four buttons with the following functions:

Button Description
Open a window to select a path to the desired file. The file must be in 24-bit bitmap format. The
selected file is saved in the internal memory of the Frame Generator and displayed in the file list
on the left.

Display the file selected in the file list. The selected file width or height can not be larger than
configured in the Frame Generator settings.

Delete the selected file from the internal memory of the Frame Generator immediately.

Delete all files from the internal memory of the Frame Generator immediately and reset the
internal file system to a clean state. Depending on the number of files stored in the memory, this
action may take several minutes.

8.2 Display color

The display color segment provides the ability to select a color to be displayed with the Frame Generator as a frame.

The width and height of the frame are arbitrary. Any
value from 1 to the maximum width or height
configured in the Frame Generator settings is valid.
Clicking in the colored select field opens an additional
window for configuring the displayed color.

Dragon Suite 49

After selecting a color and confirming with OK, the
color is displayed with the Frame Generator.

8.3 Display Direct

This segment allows a file or video to be displayed from the PC with the Frame Generator without having to upload the
file to the device.

Select the Color Format to generate from the drop-down list. Additionally select enable BGR swap to switch between
RGB and BGR.

Click loop video to generate the video in infinite loop. Select flip vertical to mirror the image vertically.

If the file size is larger than the defined active area, the file is trimmed into the vertical and horizontal active area,
beginning at the top left pixel of the file. The size can also be set in this segment using the width and height edit fields.
Furthermore, an offset can be defined so as not to start the frame at the upper left pixel but at the desired one.

The specified offset plus file size must not be larger than defined in Frame Generator settings.

The Display local File button selects an image file to be
displayed with the Frame Generator. The file type must
be a prevalent image file type, such as JPEG or bitmap.
To display a video, go to the from file tab and use the
Play Video button. Then a window opens for selecting
a file. After selecting a video file, the Frame Generator
displays the video prompt.

Use the from URL tab to display a stream from a URL, such as a webcam.

The desktop tab is used to display the current desktop
screen. When using several screens, the desired screen
can be selected using the drop down menu. The
Frame Generator can display the entire screen by
downscaling the overall frame to the size of the active
area. Therefor use the flag scale. To display only a
cutout of the overall frame, use the flag crop.

For direct video presentation, there are some functions that are additionally selectable with the appropriate flag. You
can enable the BGR swap, loop the video in a loop by restarting it at the end or flip the image vertically.

Dragon Suite 50

8.4 Video Preview

This segment displays the preview
image from a file selected in the device
file list. Additionally, selected videos
played in segment Display Direct are
displayed. The scale at the bottom of
the segment shows the video timeline
and its frame rate in frames per second.
While displaying, you can use this
timeline to rewind and rewind the
video.

8.5 Pattern Generator

This feature is only supported by Video Dragon 6222.

The Video Dragon 6222 provides the ability to generate LVDS image data internally. Therefore, an external source is not
necessary.

In this segment the buttons have the following functions:

Dragon Suite 51

Button Description
Start initialisation and unlock the settings options.

Apply the current settings.

Start the Pattern Generator.

Stop the Pattern Generator.

Reset all settings to default.

Open Advanced Settings Window for detailed color setting.

When the Init button is clickeded, the Pattern Generator is initialized to the default values. Now the Settings
parameters can be changed as desired and set with Apply. The following parameters are available:

Parameter Description
Width/
Height

Width and Height of the image.

Framerate Framerate of the image.

Frametime Frametime of the image in microseconds (read only).

Linetime Linetime of the image in nanoseconds (read only).

Number of
Frames

Number of frames that are displayed from 1 to 254. 255 means infinite displaying.

DT Picture format of the pattern (RGB888 and YUV 4:2:2 8 Bit mode are possible).

Virtual
Channel

Virtual channel ID for MIPI CSI-2.

Pattern Number of individual pattern segments in horizontal and vertical dimension from 1 to 8.

The Pattern Generator can only be started after initialization. As long as an image is being generated, the indicator light
in the Pattern Generator Settings window lights up green.

Dragon Suite 52

8.5.1 Advanced Pattern Generator

This feature is only available when Dragon Suite Advanced is activated.

In the advanced Pattern Generator window, the 8 refernce pixels of the individual patterns can also be set. Define the
number of vertical and horizontal patterns (8 at maximum) and the table below is enlarged or reduced accordingly.
Click into the table cells and change the values. The values result from 2 rows of 4 pixels each as RGB hex values.

Dragon Suite 53

9 Setting up the Frame Grabber

Open the Frame Grabber settings window by using one of the alternatives illustrated in chapter Using the GUI. The
settings window shows all supported device settings. Most of the functionalities of the Dragon Suite depend on valid
settings of the interface. So setting up the device should be the first step after starting the software.

Generally parallel usage of several interfaces with the G-API is possible. But the Dragon Suite supports the
usage of only one Frame Grabber interface at a time.

All available Frame Generator interfaces are listed
in the drop down menu. The currently selected
interface is shown in the text field of the drop
down menu.

On the left of the settings window are the following buttons:

Button Description
Load the current setting values of the selected interface.

Load the values for the selected interface by importing an external XML file. Importing a settings
file does not overwrites the current settings on the device. To overwrite the device settings, use
the Apply to HW button.

Save the current settings of the selected interface by exporting them to an external XML file.

Overwrite the current settings directly from the configuration file.

Overwrite all current settings on the device with the settings displayed on the tabs of the window.

Dragon Suite 54

A right click on the Load from file button opens
a selection of the last opened files. This facilitates
the search for frequently used configurations.
The history can be cleared with clear history.

9.1 General

The general deserializer settings are resolution and sync width parameters for basicCON 4121 and resolution for Video
Dragon 6222.

The Resolution is specified by the number of columns (width) and the number of rows (height) of a bitmap graphic.
The maximum resolution of the frame that can be captured is displayed in width and height. These parameters are
purely informative for the user and do not need to be modified.

In exceptional cases, no bit should be assigned to the data enable signal in the signal routing settings (see section
Signal Routing). If no data enable signal is being transmitted within the LVDS stream, the vertical and horizontal back
porches must be set to allow the LVDS device to determine the beginning of the valid pixel data within the stream.
These back porch settings in the General Settings tab are called Sync Width. The Vertical back porch must be set to
the number of lines transmitted after a vertical sync signal until a line of valid pixel data begins. The Horizontal back
porch must be set to the number of columns (pixels) that are transmitted within one line after a horizontal sync signal
until valid pixel data begins. When a data enable signal is transmitted and correctly assigned in signal routing, the
values of the porches (sync widths) are not important and will not be evaluated. Likewise, the value of the signal level
setting of the data enable signal is not evaluated if no data enable signal is transmitted or assigned in the signal routing.

Dragon Suite 55

9.2 Signal Levels

The valid signal levels and edges are defined in the Signal Levels tab.

This parameters are only necessary for basicCON 4121.

Polarity Defines which signal level indicates vertical or horizontal synchronization.

Data Enable Specifies at which level pixel data is being transmitted.

Pixel Clock Polarity Describes at which edge of the pixel clock signal (rising or falling) the values of the signals are
to be sampled.

Dragon Suite 56

9.3 Signal Routing

This functionality is only available for basicCON 4121.

Since there is no common standard for mapping the video signals to the 32 serialized bits in the LVDS video stream,
this mapping must be defined for each device. This could be done on the Signal Routing tab.

To deserialize the data within the LVDS data stream, the deserializer needs to know which bit of the data stream should
be deserialized to which data. Within the signal routing tab it is possible to define the assignment of each serialized bit
of the LVDS data stream to its meaning in the non-serialized video data. Therefore, the combo boxes of the tab provide
the ability to set the color bits. Since the resulting RGB frame has a color depth of 24 bit, each color (red, green and
blue) has a maximum depth of 8 bits. The selection of the corresponding bit in the video stream is made by selecting
the correct from the possibilities of the combo box. All 32 bits of the stream and the value disabled can be selected.
Disabled means that the signal has no correspondent in the video stream. This should be done, for example, if a video
stream contains frames with a color depth of less than 24 bits. The significance of the color bits is ascending. For
example, this means for an 8-bit color value of red, R0 is the least significant bit, and R7 is the most significant bit.

The control signal boxes include the vertical sync signal VSync, which indicates the end of the transmission of a
complete frame, while the horizontal sync signal HSync indicates the end of the transmission of a line. The third
control signal is the Data Enable signal. In a continuous stream, the video signal may contain porches in each single
line and between the end and the beginning of a new frame. The data enable signal indicates whether pixel data is
currently being transmitted.

The figure above shows a possible example of video routing. The video stream contains 24-bit RGB frames, with the first
8 bits in the stream representing the 8-bit blue value in ascending order (bit 0 is the least significant, bit 7 is the most
significant bit). The following 16 bits represent the green and red values, but without any order. The horizontal sync
signal is bit 24, followed by the vertical sync signal and the data enabled signal. Bits 27 to 31 have no assigned values.

There is no common standard for serializing the video data into a 32-bit LVDS stream. The assignment of
the several bits to their respective meaning within the deserialization process therefore requires exact
knowledge of the settings of the serializer used. The use of wrong settings will most likely lead to incorrect

Dragon Suite 57

frame data (i.e. wrong colors) or no valid frame data at all. The LVDS device can not determine if the user
has entered valid settings and can report capture errors due to these settings, even though the transmitted
frame data is correct.

9.4 SerDes Config

This segment is described in the Framer Generator Settings.

9.5 External Board

This segment is described in the Frame Generator settings.

9.6 Sideband Settings

This segment is described in the Frame Generator settings.

9.7 LVDS Channels

Use this tab to configure the capture parameters for the individual channels of the Video Dragon. The Capture Area
parameter is available for basicCON 4121 and Video Dragon 6222.

Capture Area defines the resolution of the frame to be captured, starting with the upper left pixel of the transmitted
frame. Any value from 1 to the real maximum width or height of the transmitted video frames is valid . If the values are
below the transmitted frame, the captured frame is part of the transmitted frame, starting with the upper left pixel.
Larger values than the transmitted frame will result in an error message as soon as a frame has to be captured. To
capture a frame with a defined offset, use H-Offset to ignore columns on the left side of the frame, or V-Offset to
disregard rows at the top of the frame.

The following properties are only supported for Video Dragon 6222 with MIPI CSI-2 and OLDI virtual channel
extension. Not all Media Interface Boards support all parameters.

Dragon Suite 58

From Video Dragon 6222, several physical channels (Channel 0, Channel 1, etc.) lead to the PC. The number of virtual
channels depends on the Media Interface module used. Depending on the configuration, the virtual channels can go
through one of the physical channels.

Enable or disable the physical channel by checking the enable box. You can select the Pixel Mode and the Data Type
for each physical channel.

For the MIPI CSI-2 Data Type the following data formats are possible:

· RGB888
· RAW6
· RAW7
· RAW8
· RAW10
· RAW12
· RAW14
· YUV422 8bit
· YUV422 10 bit
· embedded data (raw data packet, not necessarily just video data)

For the OLDI Type the following data formats are possible:

· RGB 18 bit
· RGB 24 bit
· RGB 30 bit

For the Pixel Mode the following modes are possible:

Dragon Suite 59

Mode Description
24 bit BGR 24 bit BGR format with 3 bytes per pixel. Per byte one color channel is transmitted.

Byte 0: Blue (bit 7..0)
Byte 1: Green (bit 7..0)
Byte 2: Red (bit 7..0)

12 bit RAW12 format. Here two pixels split into three bytes (little endian).
Byte 0: Pixel 1 (bit 7..0)
Byte 1: Pixel 2 (bit 3..0) und Pixel 1 (bit 11..8)
Byte 2: Pixel 2 (bit 11..4)

RAW 8 (only Video
Dragon 2)

RAW8 format. Per byte one pixel is transmitted. Byte 0: Pixel 1 (bit 7..0)
Byte 1: Pixel 2 (bit 7..0)
Byte 2: Pixel 3 (bit 7..0)
Byte 3: Pixel 4 (bit 7..0)

RAW 10 MIPI CSI2 (only
Video Dragon 2)

RAW10 format. Here four pixels split into five bytes. Recommended memory storage format.
Byte 0: Pixel 1 (bit 9..2)
Byte 1: Pixel 2 (bit 9..2)
Byte 2: Pixel 3 (bit 9..2)
Byte 3: Pixel 4 (bit 9..2)
Byte 4: Pixel 4 (bit 1..0) and Pixel 3 (bit 1..0) and Pixel 2 (bit 1..0) and Pixel 1 (bit 1..0)

RAW 12 MIPI CSI2 (only
Video Dragon 2)

RAW12 Format. Here two pixels split into three bytes (according to MIPI-CSI-2 specification).
Byte 0: Pixel 1 (bit 11..4)
Byte 1: Pixel 2 (bit 11..4)
Byte 2: Pixel 2 (bit 3..0) and Pixel 1 (bit 3..0)

RAW 16 MIPI CSI2 (only
Video Dragon 2)

RAW16 format. One pixel is set to two bytes (according to MIPI-CSI-2 specification).
Byte 0: Pixel 1 (bit 15..8)
Byte 1: Pixel 1 (bit 7..0)

RAW 12 16 LE (only Video
Dragon 2)

RAW12 format. One pixel is set to two bytes, with byte 0 shifted 4 bits to the left (little
endian).
Byte 0: Pixel 1 (bit 3..0) 0b0000
Byte 1: Pixel 1 (bit 11..4)

RAW 16 LE (only Video
Dragon 2)

RAW16 format. One pixel is set to two bytes (little endian).
Byte 0: Pixel 1 (bit 7..0)
Byte 1: Pixel 1 (bit 15..8)

YUV 422 8 MIPI CSI (only
Video Dragon 2)

Byte 0: Y2
Byte 1: V1
Byte 2: Y1
Byte 3: U1

YUV 422 8 Y1U1Y2U2 (only
Video Dragon 2)

Byte 0: Y1
Byte 1: U1
Byte 2: Y2
Byte 3: V1

YUV 422 10 MIPI CSI2
(only Video Dragon 2)

YUV422 10 bit MIPI CSI-2. Here YUV data were split into five bytes. Recommended memory
storage format.
Byte 0: U1 (bit 9..2)
Byte 1: Y1 (bit 9..2)
Byte 2: V1 (bit 9..2)
Byte 3: Y2 (bit 9..2)
Byte 4: Y2 (bit 1..0) and V1 (bit 1..0) and Y1 (bit 1..0) and U1 (bit 1..0)

BGR 888 24 (only Video
Dragon 2)

Byte 0: B1[7..0]
Byte 1: G1[7..0]
Byte 2: R1[7..0]

Dragon Suite 60

Mode Description
RGB 888 24 (only Video
Dragon 2)

Byte 0: R1[7..0]
Byte 1: G1[7..0]
Byte 2: B1[7..0]

RGB 101010 30 (only
Video Dragon 2)

30 bit RGB (10 bit red, 10 bit green, 10 bit blue) packed pixel stream
supported IfTypes: OPEN_LDI
Byte 0: R1[7..0] R1.7 R1.6 R1.5 R1.4 R1.3 R1.2 R1.1 R1.0
Byte 1: G1[5..0] R1[9..8] G1.5 G1.4 G1.3 G1.2 G1.1 G1.0 R1.9 R1.8
Byte 2: B1[3..0] G1[9..6] B1.3 B1.2 B1.1 B1.0 G1.9 G1.8 G1.7 G1.6
Byte 3: R2[1..0] B1[9..4] R2.1 R2.0 B1.9 B1.8 B1.7 B1.6 B1.5 B1.4
Byte 4: R2[9..2] R2.9 R2.8 R2.7 R2.6 R2.5 R2.4 R2.3 R2.2
Byte 5: G2[7..0] G2.7 G2.6 G2.5 G2.4 G2.3 G2.2 G2.1 G2.0
Byte 6: B2[5..0] G2[9..8] B2.5 B2.4 B2.3 B2.2 B2.1 B2.0 G2.9 G2.8
Byte 7: R3[3..0] B2[9..6] R3.3 R3.2 R3.1 R3.0 B2.9 B2.8 B2.7 B2.6
Byte 8: G3[1..0] R3[9..4] G3.1 G3.0 R3.9 R3.8 R3.7 R3.6 R3.5 R3.4
Byte 9: G3[9..2] G3.9 G3.8 G3.7 G3.6 G3.5 G3.4 G3.3 G3.2
Byte 10: B3[7..0] B3.7 B3.6 B3.5 B3.4 B3.3 B3.2 B3.1 B3.0
Byte 11: R4[5..0] B3[9..8] R4.5 R4.4 R4.3 R4.2 R4.1 R4.0 B3.9 B3.8
Byte 12: G4[3..0] R4[9..6] G4.3 G4.2 G4.1 G4.0 R4.9 R4.8 R4.7 R4.6
Byte 13: B4[1..0] G4[9..4] B4.1 B4.0 G4.9 G4.8 G4.7 G4.6 G4.5 G4.4
Byte 14: B4[9..2] B4.9 B4.8 B4.7 B4.6 B4.5 B4.4 B4.3 B4.2

From the Virtual Channel drop-down menu, you can select the virtual channel to be routed to the appropriate physical
channel. Depending on whether the extended box is checked or not, you can choose between 4 or 16 (extended) virtual
channels. The parameter applies globally to all physical channels.

For the Transfer Mode the following data formats are possible:

· Generate
· RxTx Loop

Write the displayed settings in the window by clicking the Apply button. When you use this button, the settings of the
other tabs are not written to the device.

9.7.1 Open LDI Mode

This segment is described in the Frame Generator settings.

9.7.2 RxTx Loop
RxTx Loop is used to pass incoming LVDS data internally from the Frame Grabber to the Frame Generator.

For this, the loop must first be configured on the Frame Grabber side. This will create the internal buffer.

Dragon Suite 61

After that, the frame generator must be configured accordingly. For example, if channel 0 of the frame grabber is set to
RxTxLoop, the Rx channel must be set to 0 on the frame generator. Thus, the previously created buffer is then grabbed.

Dragon Suite 62

9.8 IO Routing

This segment is described in the Frame Generator settings.

9.9 Ethernet

This segment is described in the Frame Generator settings.

9.10 LVDS Info

The Frame Grabber LVDS Info window for the selected interface can be opened with the icon ()(ALT + 6). The
window consists of two parts: the Device Information and the LVDS Information. For basicCON 4121 and Video Dragon
6222 the device information is the same. However, the LVDS information differs between the two devices.

The device information contains:

· SerDes Type: The type of the deserializer mounted on the currently installed extension board of the LVDS device.
· Device Type: The type of the LVDS device.
· Firmware Version: The firmware version running on the device.
· Hardware Version: The hardware revision number.
· Serial Number: The serial number of the LVDS device.
· VHDL Version: The version number of the VHDL design of the FPGA device.

Dragon Suite 63

9.10.1 LVDS Information of basicCON 4121

The LVDS information contains information about the current basicCON 4121 video stream:

· LVDS Channel: Select the LVDS Channel. (for basicCON 4121 only one channel is supported).
· Horizontal Resolution: Number of horizontal pixel clock cycles where the Data Enable signal is active. The value

corresponds to the horizontal resolution of the image source.
· Vertical Resolution: Number of vertical pixel clock cycles where the Data Enable signal is active. The value

corresponds to the vertical resolution of the image source.
· Lock: Indicates whether the deserializer is synchronous to the LVDS bit stream.
· PixelClock: Frequency of pixel clock in kHz.
· SyncPeriodH: Absolute number of pixel clock cycles between two horizontal synchronization edges.
· SyncPeriodV: Absolute number of pixel clock cycles between two vertical synchronization edges.
· SyncWidthH: Number of pixel clock cycles during the horizontal synchronization is active. The value corresponds

to the Horizontal Sync Width of the image source.
· SyncWidthV: Number of pixel clock cycles during the vertical synchronization is active. The value corresponds to

the product of the total horizontal active area hTotal and the Vertical Sync Width of the image source.

9.10.2 LVDS Information of Video Dragon 6222

The LVDS information contains information about the current Video Dragon 6222 video stream:

· LVDS Channel: Select the LVDS Channel.
· Horizontal Resolution: Number of horizontal pixel clock cycles where the Data Enable signal is active. The value

corresponds to the horizontal resolution of the image source.
· Vertical Resolution: Number of vertical pixel clock cycles where the Data Enable signal is active. The value

corresponds to the vertical resolution of the image source.
· Lock: Indicates whether the deserializer is synchronous to the LVDS bit stream.
· Frame rate: The speed at which the images are sent in FPS (Frames per second).
· CSI2 data type: MIPI CSI-2 type of the data.
· Pixel mode: Pixel Mode of the data.
· Frame counter: Number of captured frames.
· DMA channel: Used DMA channel.
· Transfer mode: Mode, how the data is transferred (Possible modes: Command-Response mode, DMA mode).
· Device framebuffer count: Number of frame buffers within the device.
· Frame rate divisor: Specifies whether all frames or every x-th frame should be captured.
· Device framebuffer overwrite: Specifies whether full frame buffers are overwritten when new frames receive.
· Frame count: Number of frames to capture. When number of frames to capture is reached, frame capturing is

automatically disabled.
· Capture enable state: Specifies whether Capture is enabled or disabled.

Dragon Suite 64

Dragon Suite 65

10 Frame Grabber Dialog Window

Open the Frame Grabber dialog window with one of the alternatives illustrated in chapter Using the GUI. The dialog
window has several segments to manage the capturing process.

The Tool Box

Several tabs:
· Capture Settings
· Compare Settings
· Avi Settings
· Raw Data Recording
· DMA Config

The Frame Area

All available Frame Generator interfaces are listed
in the drop down menu. The currently selected
interface is shown in the text field of the drop
down menu.

The LVDS Channel setting in the dropdown menu on
the right can be used for Video Dragon 6222 only. Here
you can choose between LVDS channels 0 and 1.

The Color Data Format and Pixel Mode of the captured frame can be changed in the dropdown menus on the right.

Depending on the Media Interface board, the possible values are displayed in the drop-down list. More detailed
information can be found in the G-API manual.

Dragon Suite 66

For a more complete way to customize the LVDS channels for Video Dragon 6222, see the LVDS Channels
tab in Frame Grabber Settings section.

10.1 Tool Box

The Tool Box segment provides several icons with the following functions:

Icon Description
Capture a single frame from the selected device and display it in the frame area (ALT + 1).

Capture images continuously and display them in the frame area. The capturing starts immediately after
clicking and stops after clicking again. The icon will remain red while capturing is in progress (ALT + 2).

Save the last captured frame to a file. The last captured frame can always be seen in the frame area (ALT + 3).

Choose a path to the directory where video files created in Record mode will be stored (ALT + 4).

Record continuously captured frames to an AVI video file. If no path is selected yet, a window opens in which
you can select the directory. An existing file will be overwritten. The recording starts immediately after clicking
and stops after clicking again. The icon will remain red while capturing is in progress (ALT + 5).

Load a reference frame for compare function by selecting an image file (ALT + r).

Compare a captured frame to the loaded reference frame (ALT + c).

Open LVDS info window (ALT + 6).

When you save the captured frame (), you can also save the image as .dat -file. This will save the raw
data directly from the buffer without changing it. However, this only works after recording a single frame!

10.2 Capture Settings

As in chapter Framegrabber General Settings, the Capture Area defines the resolution of the frame to be captured,
starting at the specified offset.

Additionally in this tab are several flags to configure the frame area:

Dragon Suite 67

Flag Description
Fit to window The captured frame is adapted to the entire frame area size. Changing the size of the dialog window

also changes the size of the captured frame.

Show new
window

The captured frame will be displayed in a new full-screen window. At the bottom of the new window,
the window coordinates and RGB data of the pixel where the mouse is located are displayed. You can
also use the mouse scroll wheel to zoom into the image until the single RGB pixel values are displayed.

Enable BGR
swap

Change from RGB to BGR image format.

Mirror vertical The captured frame is displayed upside down.

Save on single
shot

Saves an image for every single shot.

Enable
timestamp

The timestamp of the captured frame is displayed at the bottom of the frame area.

Stop on error The capturing stops when an error is recognized.

Use dma
transfer

Using DMA (Direct Memory Access), the frames can be stored directly in the main memory in order to
achieve a faster data transfer and to relieve the processor. (Only supported for G PCIe 6222 when using
PCIe connection)

Frame rate
divider

Divide the frame rate.

A Dragon Suite Advanced license is required for the following function.

To capture from a URL, set enable and add the URL name.

10.3 Compare Settings

The Dragon Suite provides the ability to compare a captured frame with a reference frame. This function compares the
frames pixel by pixel to see if they match.

The Compare Area parameters define the resolution of the frame to be captured, starting at the specified offset. The
allowable tolerance range for the RGB values can be set in section Color Tolerance. For each color - red, green and blue
- a separate tolerance value between 0 and 255 can be set. This value specifies by how many pixels the corresponding
color of the captured frame may deviate from the color value of the reference frame. For example, if the color value Red
in the reference frame is 132 pixels and the tolerance value is 10 pixels, the pixel value of the captured frame may be
between 122 and 142. Otherwise, this pixel is considered to be faulty.

Dragon Suite 68

To use the comparison function, a reference frame must be loaded via the Load Reference button. To compare the
frames, use the Compare button. The loaded reference frame is compared with the last captured frame, which is also
displayed in the Frame Area. If no frame has been captured before, the function returns an error. When the Compare
command is executed, the differing pixels are displayed in the Frame Area:

The comparison result is displayed in the Message Box below. In case the frames do not match, the number of different
pixels is displayed.

10.4 Avi Settings
In this segment, the settings for recording videos can be defined.

The selectable Codec defines the compression type for the recording AVI video files.

Using no compression results in large AVI video files. Each frame requires the product of frame width *
frame height * 3 bytes for 24-bit frames.

The Frame rate sets the maximum rate for capturing frames in continuous mode. This affects both the capture mode
and the recording of video files.

The Image Quality slider sets the compression parameter for the selected video compression codec. Depending on the
selected codec, the value has different impacts. The lower the number, the higher the compression and the lower the
image quality. For more information about the relationship between value and compression of the video, see the
documentation for the corresponding codec.

10.5 Raw Data Recording
Recording raw data is only possible in Dragon Suite Advanced . This segment is described in chapter Dragon Suite
Advanced.

Dragon Suite 69

10.6 Frame Area
The frame area always displays the last captured frame.

Below is the timestamp, if desired. It also displays the frame rate at which the image is captured.

Dragon Suite 70

11 Sideband Communication
Parallel to the image transfer, the control data can be read in or out via sideband. Depending on the Media Interface
module the Video Dragon suppports I²C, SPI and UART. With appropriate commands, the registers of the ICs of both
the Video Dragon as well as the remote station can be read or written. For some hardware, it is imperative that e.g. a
sideband display must receive a "wake-up" command to start communication or receive and process image data.

The sideband communication is only available with enabled sideband activation. The activation can be
obtained through GÖPEL electronic sales department.

Manual manipulating of the configuration data list needs an extreme good knowledge of the meaning of
each register value. This can only be obtained from the data sheets of the serializer and deserializer. Even a
single wrong setting of only one register may render the complete configuration invalid and the device
inoperative.

An incorrectly configured device can be reset to its default values by a restart.

The following figure shows the sideband communication between the serializer and the deserializer in a schematic way:

The data communication signal (I²C, UART or SPI) from the FPGA is routed to the IC and serialized there. The
transmission then takes place via the LVDS data stream in parallel with the video signal. In the receiving IC, the data is
deserialized and returned to the outside. The communication is usually bidirectional. In general, the up channel has a
lower data rate than the down channel.

Dragon Suite 71

11.1 Configuration of Sideband Communication via G-API
To configure and use the sideband communication of the Video Dragon the G_Lvds_Common_Data_* commands
of the G-API are used. The configuration is divided into setting the data mode and adjusting the parameters.

Please compare the G-API Documentation for more information.

11.1.1 Setting the Data Mode
The data mode is set within the command G_Lvds_Common_Data_Property_SetById by the property
G_LVDS__COMMON__DATA__PROPERTY_ID__DATA_MODE. For these, the following options are currently
available:

Data mode Description
NONE No Data Mode is set
I2C_MASTER_TO_DESERIALIZER Video Dragon is I²C Master on deserializer IC
I2C_MASTER_TO_SERIALIZER Video Dragon is I²C Master on serializer IC
I2C_SLAVE_TO_DESERIALIZER Video Dragon is I²C Slave on deserializer IC
I2C_SLAVE_TO_SERIALIZER Video Dragon is I²C Slave on serializer IC
SPI_MASTER_TO_DESERIALIZER Video Dragon is SPI Master on deserializer IC
SPI_MASTER_TO_SERIALIZER Video Dragon is SPI Master on serializer IC
SPI_PASSTHROUGH_DUAL Video Dragon combines data from INAP375R and INAP375T in "dual-mode"
SPI_RECEIVER_DUAL Video Dragon is connected to INAP375R in "Dual Mode"
SPI_TRANSMITTER_DUAL Video Dragon is connected to INAP375T in "Dual Mode"
SPI_SLAVE_TO_DESERIALIZER Video Dragon is SPI Slave on deserializer IC
SPI_SLAVE_TO_SERIALIZER Video Dragon is SPI Slave on serializer IC
UART_TO_DESERIALIZER Video Dragon is connected to the UART interface of the deserializer IC (only

supported by basicCON 4121)
UART_TO_SERIALIZER Video Dragon is connected to the UART interface of the serializer IC (only

supported by basicCON 4121)

The data mode currently set on the IC can be queried by the command
G_Lvds_Common_Data_Property_GetById.

11.1.2 Setting the Parameters
Depending on the Data Mode set, certain parameters for the sideband communication can be set. This also happens in
the command G_Lvds_Common_Data_Property_SetById. The prefix of the property name
G_LVDS__COMMON__DATA__PROPERTY_ID__*DATAMODE*_ indicates for which data mode a property is
valid (*DATAMODE* can be I2C_MASTER, I2C_SLAVE, SPI_MASTER, SPI_SLAVE or UART).

The following table explains the available parameters, with the default values highlighted in bold:

Dragon Suite 72

Parameter Description
I2C_MASTER_BAUDRATE Baud rate of the I²C master: 100kHz (0) or 400kHz (1)
I2C_MASTER_CLOCK_STRETCHING Clock stretching is the ability of the I²C slave to delay the master-driven

clock. For this, the master must read back the clock to respond
accordingly. This parameter enables (1) or disables (0) the reaction to
the delay of the master.

I2C_MASTER_STOP_NACK The I²C master sends an ACK (0) or no ACK (1) from the slave after the
last received byte.

I2C_SLAVE_BAUDRATE Baud rate of the I²C slave: 100kHz (0) or 400kHz (1).
SPI_MASTER_CPHA Sets the clock phase of the SPI master data: The data is valid on the first

edge (0) after the ChipSelect or on the second edge (1).
SPI_MASTER_CPOL Sets the clock polarity of the SPI signal: In idle state, the clock is Low (0)

or High(1).
SPI_MASTER_CS_MODE Sets the behavior of the ChipSelect signal during a transfer over several

bytes: ChipSelect remains active between the individual bytes (0) or
changes briefly to inactive (1).

SPI_MASTER_CLOCK_DIVIDER Determines the SPI clock frequency based on a basic clock of 25MHz
according to the following equation: Clock = 25MHz/(Divider + 1) For
example Divider = 0 results in a clock of 25MHz; Divider = 1 results in a
clock of 12,5MHz etc.

SPI_SLAVE_CPHA Sets the clock phase of the SPI slave data: The data is valid on the first
edge (0) after the ChipSelect or on the second edge (1).

SPI_SLAVE_CS_IDLE Sets the minimum time that the ChipSelect must be inactive for the slave
to detect the completion of a transfer as a multiple of 20ns. The specified
value sets the time to a multiple of 20ns, e.g.:
0 = 127*20ns = 2,54μs
1 = 1*20ns = 20ns
2 = 2*20ns = 40ns usw.

UART_BAUDRATE The baud rate that is closest to the specified value is set (the real value can
be read out). Default: 115200 baud (only supported by basicCON 4121)

UART_PARITY Defines whether a parity bit is formed and transmitted. 0 = no parity
bit, 1 = even parity, 2 = odd parity (only supported by basicCON 4121)

11.2 I²C Master Mode
In the I²C master mode, the Video Dragon is the I²C master for the (de-)serializer IC used on the Media Interface
module. Depending on this, the mode can be set to I2C_MASTER_TO_DESERIALIZER or
I2C_MASTER_TO_SERIALIZER.

11.2.1 Communication
Once the correct data mode and parameters have been set, communication can be made using the firmware
commands G_Lvds_Common_Data_I2cTransfer or G_Lvds_Common_Data_I2cTransferEx. The
start command initiates a communication and determines the (successful) completion by polling the status. With this
command, any communication on the bus can be initiated independently of any protocol.

11.2.1.1 I²C Transfer on the Bus

The transfer on the I²C bus is bytewise. First, the master sends a start signal followed by the bytes it wants to send to
the slave. Then he drives the clock for as many bytes as he wants to read bytes from the slave, which in turn now drives
the data line with the answer. Thereafter, a stop signal is sent from the master and communication is completed.

The bytes sent by the master are individually acknowledged by the slave (ACK) or not (NACK). Accordingly, the master
acknowledges the bytes from the slave (ACK) or not (NACK). Additionally, the master can provide another byte (in

Dragon Suite 73

addition to the first one) that it writes with a start signal. This "Repeated Start" signal does not require a previous stop
signal.

11.2.1.2 I²C Transfer by Command

The command to start the transfer has the following parameters:

Parameter Description
NumberOfTxBytes The number of bytes to be written by the master. The master drives the clock for exactly as

many bytes and places the data on the data line. A maximum of 255 bytes can be
transmitted.

NumberOfRxBytes The number of bytes to be read by the master. The master drives the clock after writing for
exactly as many bytes and reads the data from the data line. A maximum of 255 bytes can be
received.

SendStartMask Bytemask indicating the position of an additional (Repeated) start signal (Example: 0x02 =
2nd byte is provided with start signal, 0x04 = 3rd byte, …).

TxData The data bytes to be written. A maximum of 255 bytes can be transmitted.

 The transfer command has the following return values:

Return Value Description
AckMask Byte mask indicating the position of the acknowledged (ACK) bytes (Example: 0x01 = 1st byte

acknowledged, 0x02 = 2nd byte, 0x03 = 1st and 2nd byte, …).
NumberOfRxBytes The number of bytes read by the master (or written by the slave). A maximum of 255 bytes

can be received.
RxData The read data bytes. A maximum of 255 bytes can be received.

To read a register entry, the transfer function must be executed twice. Once to send the read command and a second
time to receive the response. The reason for this is that during I²C communication with a microcontroller, the
microcontroller needs a certain amount of time to prepare the response.

// data register read, with STOP between Write and read
bool G_Lvds_DataRegisterReadWithSTOP(G_Lvds_Common_Data_Register_Read_Cmd_t
cmd, G_Lvds_Common_Data_Register_Read_Rsp_t * rsp)
{
 G_Error_t rc;

 G_Lvds_Common_Data_I2cTransferEx_Cmd_t cmdI2c;
 G_Lvds_Common_Data_I2cTransferEx_Rsp_t rspI2c;

 memset(&cmdI2c, 0, sizeof(cmdI2c));
 memset(&rspI2c, 0, sizeof(rspI2c));

 cmdI2c.Flags =
G_LVDS__COMMON__DATA__I2C_TRANSFER_EX__CMD_FLAG__NORMAL_READ_WRITE;

 cmdI2c.NumberOfTxBytes = 2;
 cmdI2c.NumberOfRxBytes = 0;
 cmdI2c.TxData[0] = cmd.DeviceAddress<<1;
 cmdI2c.TxData[1] = cmd.RegisterAddress;

 rc = G_Lvds_Common_Data_I2cTransferEx(m_portHandle, &cmdI2c, &rspI2c);
 Sleep(100);
 cmdI2c.NumberOfTxBytes = 1;
 cmdI2c.NumberOfRxBytes = cmd.NumberOfRegisters;
 cmdI2c.TxData[0] = (cmd.DeviceAddress<<1) + 1;
 cmdI2c.TxData[1] = 0;

Dragon Suite 74

 rc = G_Lvds_Common_Data_I2cTransferEx(m_portHandle, &cmdI2c, &rspI2c);

 if(!ErrorHandler(rc, __LINE__,__FILE__,Q_FUNC_INFO))
 {
 return false;
 }

 rsp->NumberOfRegisters = rspI2c.NumberOfRxBytes;

 for (int i = 0; i < rsp->NumberOfRegisters; i++)
 {
 rsp->Data[i] = rspI2c.RxData[i];
 }

 return true;
}

In case the slave does not respond, the master reads a high for each bit, which results in a 0xFF.

11.2.1.3 I²C Protocol

When transmitting with I²C, the same protocol is used in most cases. This is for writing or reading registers of a slave
device. When writing a register, the following data is transferred in this order:

1. Device address (7bit address) and bit (0) for write access
2. Register address (1 byte or more, depending on the device)
3. Register value (1 byte or more, depending on the device)

All bytes must be confirmed by the slave. At the beginning and end of the transfer, there is a start or stop signal.

Reading a register is done in two steps. The device and register addresses are written to the slave first, then the device
address is written again to initiate reading of the contents:

1. Device address (7bit address) and bit (0) for write access
2. Register address (1 byte or more, depending on the device)
3. Repeated Start signal is sent
4. Device address (7bit adress) and bit (1) for read access
5. Register value is sent by the slave (1 byte or more, depending on the device)

All master bytes must be confirmed by the slave. The master confirms all slave bytes (register value) except the last. At
the beginning and end of the transfer, there is a start or stop signal. A read access to a 1-byte register is shown as an
example in the following graphic:

11.3 I²C Slave Mode
In the I²C slave mode, the Video Dragon is the I²C slave for the (de-)serializer IC used on the Media Interface module.
Depending on this, the mode can be set to I2C_SLAVE_TO_DESERIALIZER or
I2C_SLAVE_TO_SERIALIZER.

11.3.1 Communication
In I²C slave mode, no independent communication can be triggered because only the master drives the clock of the I²C

Dragon Suite 75

bus and also determines the type of access. In slave mode, the Video Dragon therefore simulates one or more slave
devices in the manner of the protocol, as described in section I²C Protocol of the chapter I²C Master Mode. The slave
then behaves accordingly and responds to requests initiated by the master.

The commands G_Lvds_Common_Data_I2cSlaveDevice_Define and
G_Lvds_Common_Data_I2cSlaveRegister_Define are used to define the simulated devices and their
associated registers.
Here, a device must always be defined first before an associated register can be created. Equivalently, with the
commands G_Lvds_Common_Data_I2cSlaveDevice_Delete and
G_Lvds_Common_Data_I2cSlaveRegister_Delete devices or registers are removed from the simulation.
Deleting a device automatically removes all associated registers.

11.3.1.1 I²C Slave Definition by command

The command for defining a slave device to be simulated has the following parameters:

Parameter Description
Flags NONE .. no flag set

REG_ADD_WIDTH_16BIT .. the address width of the device registers is 2 bytes
(otherwise only 1 byte).
DATA_WIDTH_16BIT .. the data width of the device registers is 2 bytes (otherwise only 1
byte).
ACCESS_WO_ADDRESS .. the master sends only the device address but no register
address for access.
OVERWRITE_DEVICE .. an already defined device with this address will be overwritten
(otherwise an error message appears, that the device does not exist).
DEVICE_ADDRESS_7BIT .. the specified device address is 7bit (otherwise 8).

DeviceAddress The I²C address to which the device should respond.
NAckByte Specifies from how many bytes the slave should respond with a NACK.

0 … every byte is confirmed, 1 … no confirmation from the 1st byte, …

The command for defining a slave register to be simulated has the following parameters:

Parameter Description
Flags NONE .. no flag set

OVERWRITE_REGISTER .. an already defined register with this address will be
overwritten (otherwise an error message appears, that the device does not exist).
DEVICE_ADDRESS_7BIT .. the specified device address is 7bit (otherwise 8).

DeviceAddress The I²C address to which the device should respond.
RegisterAddress The address of the register that is defined.
RegisterValue The value of the register that is defined.

11.4 SPI Mode
An SPI bus system typically consists of a master and many slaves. The clock line is the same for all participants and is
driven by the master. The data from the master goes via the MOSI line (MasterOutSlaveIn) to the slaves. The slaves
provide their data via MISO (MasterInSlaveOut). The selection of the slave with which the master communicates is
made via the corresponding SlaveSelect (SS). Further communication parameters are the clock polarity and the clock
phase. The clock polarity indicates whether the master clock is high or low active. The clock phase defines on which
edge of the clock the data is taken over.

11.5 SPI Master Mode
In the SPI master mode, the Video Dragon is the SPI master for the (de-)serializer IC used on the Media Interface

Dragon Suite 76

module. Depending on this, the mode can be set to SPI_MASTER_TO_DESERIALIZER or
SPI_MASTER_TO_SERIALIZER.

11.5.1 Communication
Once the correct data mode and parameters have been set, communication can be made using the firmware
command G_Lvds_Common_Data_SpiTransfer.

11.5.1.1 SPI Transfer on the Bus

The transfer on the SPI bus is bytewise. There are no special control signals. In addition to the clock driven by the
master, there is a dedicated data line for the data from the master to the slave and one for the data from the slave to
the master. A bidirectional communication can thus take place simultaneously. For addressing a slave device, a special
line (ChipSelect) is used. This is pulled by the master to a special level and leads individually to only one slave. The
data lines are called MOSI – Master Out Slave In and MISO – Master In Slave Out. Bidirectional communication is
exemplified in the following figure:

There is no special protocol for communication via SPI. The validity of the data (at the first or second edge of the clock)
and the idle state of the clock (high or low level) are also not normalized and therefore parameterizable under the
parameters CPHA and CPOL (see chapter Setting the Parameters). For example, in the figure above, CPHA is set to the
second edge and CPOL is set to high.
The other parameters define the data rate and the behavior of the ChipSelect signal between individual bytes.

11.5.1.2 SPI Transfer by Command

The command to start the transfer has the following parameters:

Parameter Description
NumberOfTxBytes The number of bytes to be written by the master. The master drives the clock and puts the

data on the data line.
NumberOfRxBytes The number of bytes to be read by the master. The master drives the clock and reads the

data from the data line.
TxData The data bytes to be written.

Dragon Suite 77

Reading and writing are always done simultaneously on the bus. Therefore, the total number of bytes for
which the master drives the clock is the maximum of the values of the bytes to be written and read. The
count of the bytes starts from the beginning of the transfer. This must be taken into account in the number
of bytes to be read. For example, if you want to read a response byte after 3 bytes written by the master,
you must set the number of bytes to be written to 3 and those of the bytes to be read to 4 (3 + 1). At first 3
bytes are read during writing. These should each have the value 0 due to the prevailing resting level on the
MISO line. Subsequently, the payload byte is read with the answer in 4th place.

The transfer command has the following return values:

Return Value Description
NumberOfRxBytes The number of bytes read by the master (written by the slave).
RxData The value of the read data bytes (valid from 0 to NumberOfReadBytes – 1).

11.6 SPI Slave Mode
In the SPI slave mode, the Video Dragon is the SPI slave for the (de-)serializer IC used on the Media Interface module.
Depending on this, the mode can be set to SPI_SLAVE_TO_DESERIALIZER or
SPI_SLAVE_TO_SERIALIZER.

11.6.1 Communication
In SPI slave mode, no independent communication can be triggered because only the master drives the clock of the
SPI bus and also determines the type of access. Nevertheless, data can be read and written. The used command
G_Lvds_Common_Data_SpiTransfer is the same as in the SPI Master Mode. The Video Dragon stores data
received via the MOSI line in an internal FIFO so that bytes that have already been read can be retrieved. The start
command thus does not initiate a transfer, but provides information about whether a successful transfer initiated by
the master has taken place and reads out received data. The bytes to be written transferred by parameter are sent to
the master from the beginning of the subsequent transfer. As soon as the master starts a new communication and
restarts the clock, the data is put on the bus. Again, it should be noted that for a reasonable answer, it may be
necessary to prepend some bytes with zero values to the actual user data (see note in chapter SPI Transfer by
Command).

11.7 SPI Dual Mode
SPI Dual Mode is only used with INAP375 boards that communicate via the APIX standard. The special feature of these
ICs is that a direct bi-directional communication is possible, in which both ICs involved can trigger a transfer. This is
possible because two parallel SPI interfaces are used, and only the MOSI data line is used at a time. An answer to sent
data thus does not take place in the same transfer and is limited by the cycle length and time of the master. But by the
independent spontaneous sending of data on the self-driven parallel bus.

Dragon Suite 78

The transmitter mode is used for the INAP375T and the receiver mode for the INAP375R.

11.7.1 Communication

11.7.1.1 SPI Transfer by Command

The commands used are the same as in SPI Master Mode. They differ only in their execution on the bus. Thus, for read
bytes, the clock is not driven by the master, but (as in slave mode) the bytes of a previous transfer are fetched from the
internal FIFO. If there were no received bytes, the return value of the number of bytes read equals 0. The writing of bytes
is thus triggered by the command and takes place accordingly in time thereafter. The reading refers to a transfer that
took place before the command was executed.

The sideband always transmits a fixed number of 8 bytes. If fewer bytes are transferred to the command for
transmission, they are padded with zero bytes for the transfer to the required number. When reading it should be noted
that 8 bytes should be read, even if the number of user data is lower. Any following zeros can be ignored when
evaluating the data.

11.8 UART Mode
UART communication is handled differently on Video Dragon 6222 than on basicCON 4121. While there is a Data Mode
for the basicCON 4121, which is based on the FIFO, the FIFO of the IO interface is directly addressed at the Video Dragon
6222. This results in more flexibility in the use.

11.8.1 Communication of basicCON 4121
For UART mode the data mode of the Video Dragon has to be set to UART_TO_DESERIALIZER or
UART_TO_SERIALIZER.

There are no master or slave roles in UART communication. Both parties can send data via their TX line, which serves
as the RX line for reading. The writing of data therefore triggers a transfer on the TX line. The reading refers to already
transmitted data, which are stored in a FIFO when received from the Video Dragon. Once the correct data mode and
parameters have been set, communication can be made using the firmware command
G_Lvds_Common_Data_UartTransfer.

11.8.1.1 UART Transfer by Command

The command to start the transfer has the following parameters:

Dragon Suite 79

Parameter Description
Flags NONE .. no flag set.

READ_ALL .. regardless of NumberOfReadBytes, all data is read. The FIFO is completely
emptied.
WITH_TIMESTAMP .. the receive data is read out with a 64-bit time stamp (time of
receipt).

NumberOfTxBytes The number of bytes to write.
NumberOfRxBytes The number of bytes to read.
TxData The data bytes to be written.

The transfer command has the following return values:

Return Value Description
NumberOfRxBytes The number of bytes to read.
RxData The value of the read data bytes (valid from 0 to NumberOfReadBytes – 1), or first all

timestamps followed by all data bytes if timestamps are enabled.

11.8.2 Communication of Video Dragon 6222
Depending on the Media Interface board used, appropriate multifunctional purpose (MFP) pins and SerDes GPIOs must
be configured. Due to the high complexity caused by our large product variety, we advise you to get assistance from
our technical support.

Dragon Suite 80

11.9 Sideband Communication Tool
The Sideband Communication tool is for reading or writing register data to a device via UART, I²C or SPI.

The sideband communication is only available with enabled sideband activation. The activation can be
obtained through GÖPEL electronic sales department.

Manual manipulating of the configuration data list needs an extreme good knowledge of the meaning of
each register value. This can only be obtained from the data sheets of the serializer and deserializer. Even a
single wrong setting of only one register may render the complete configuration invalid and the device
inoperative.

First select a data mode and set it on the sideband settings tab of the device to work correctly with this tool. The
current data mode is displayed below the extension board information.

All available interfaces are listed in the drop down
menu. The currently selected interface is shown
in the text field of the drop down menu. Selecting
the interface will automatically open the sideband
tab of the defined data mode.

Dragon Suite 81

11.9.1 UART
For UART communication, there is no master or slave roles. Both parties can send data over their Tx line, which is used
as Rx line on the other. The writing of data triggers a transfer on the Tx line. The reading of data refers to already
transmitted data that is stored in the FIFO when the Video Dragon receives it.

To start the transfer, use the Write Data table. Enter the data in the table, following the UART Protocol specified in the
serializer / deserializer data sheet. The package values can be entered in decimal or hexadecimal format. Separate the
single package values with "," (decimal point) or " " (blank space). To write several package frames at once, use
";" (semicolon) to separate them. Select the auto read result checkbox to automatically read the received results after
writing and display them in the Read Data table. Add a Delay in [ms] to define the time delay between two frames
(useful only if several frames are written simultaneously). Press the Write button to write the data displayed in the table
to the device.

The data can also be loaded from a text file via the Load data button. The data of each sequences must be defined in
the order shown in the example below.

If the auto-read function is not checked, the result data can be read using the Read button. It is possible to read all
data using the check box or to define a specific number of Bytes to read. Use the Clear table button to clear the table,
or the Save table button to save the table entries in a text file.

Dragon Suite 82

11.9.2 I²C
Transmission on the I²C bus is performed byte by byte. First, the master sends a start signal followed by the bytes it
wants to send to the slave. Then the master continues the clock for as many bytes as it would like to read from the
slave. The slave drives the data line with the response. Thereafter, the master sends a stop signal and the
communication is terminated.

The bytes sent by the master are individually acknowledged by the slave with a confirmation signal (ACK) or not
(NACK). Similarly, the master acknowledges the bytes from the slave (ACK) or not (NACK).

To read register data via I²C, first define the device address (hex value) and the first register address (hex value) from
which the registers are to be read. The device addressing can be in 7-bit or 8-bit format, chosen in the 7-bit check box.
If you do not check 7-bit , the 8-bit format is set. The registers can be read in 8-bit or 16-bit format, chosen in the 16-bit
Registers check box. If you do not check 16-bit, the 8-bit format is set. This settings can be found in the specifications
of the device. In addition, specify the number of bytes you want to read starting at the defined register address (decimal
value). The single registers are read and written simultaneously. Select the Read with Stop check box to first write all
registers before reading them.

Click the Read Registers button to read the data and display them in the data list. Save this data with the button Save
table in a file.

There are two ways to write data to the device. The first option is to import a list of data from a text file using the
Import Data button. Select a path to the file and the list will appear in the data table.
Possible comments from the text file on the individual register write items are also transferred to the table.

The other way is to add data one by one by hand. Right-click in the table and select add row to add a register row at
the end of the table. To create a new row at a specific location in the table, select insert row. The data can be costumed

Dragon Suite 83

by clicking in the list entry and changing the value. The value Delay defines the write delay after each register (default is
20) in milliseconds.

In the column Mask can be defined which bits of the register should be overwritten. If 0xFF is set for Mask, everything is
written. If Mask = 0x01, then bit 0 is written.

This data table can be saved to a file by using the Save table button.
Press the Write Registers button to write the table data to the selected device.

In the I²C dialog up to 4 bytes can be sent in one row, as a 32 bit value. The bytes to be written start with
the lowest byte.
This means, for example, if you want to write 0x0010 into a 16 bit register, you have to enter 0x1000.

If use Group Mode is set, consecutive register addresses are grouped together as one command. This can
save time during communication.
So in the example below the register addresses 0x50 and 0x51 are set in one write command.
However, this only happens if no delay is specified (Delay = 0) and if Mask = 0xFF.

11.9.3 SPI
As with the I²C, the Video Dragon also takes over the master role of the IC on the extension board in SPI master mode.
The transmission also takes place byte by byte. In addition to the clock controlled by the master, there is a dedicated
line for the data from the master to the slave (MOSI - Master Out Slave In) and one for the data from the slave to the
master (MISO - Master In Slave Out). Therefore, bidirectional communication can take place simultaneously. For
addressing a slave device, the Chip Select line is used.

There is no specific protocol for SPI communication. The data validity (on the first or second edge of the clock) and the
idle state of the clock (high or low level) are also not standardized. Thus they can be parametrized under the
parameters CPHA and CPOL.

Dragon Suite 84

To start the transfer, use the Write Data table. Enter the data in the table, following the SPI Protocol specified in the
serializer / deserializer datasheet. The package values can be entered in decimal or hexadecimal format. Separate the
single package values with "," (decimal point) or " " (blank space). The data can also be loaded from a text file via the
Load data button. To write several package frames at once, use ";" (semicolon) to separate them. Select the auto read
result check box to automatically read the received results after writing and display them in the Read Data table. Add a
Delay in [ms] to define the time delay between two frames (useful only if several frames are written simultaneously).
Press the Write button to write the data displayed in the table to the device.

If the auto-read function is not checked, the result data can be read using the Read button. It is possible to read all
data using the check box or to define a specific number of Bytes to read. Use the Clear table button to clear the table,
or the Save table button to save the table entries in a text file.

11.9.4 Indigo

Currently, this feature is only supported by basicCON 4121.

The Indigo tab is used for sending automotive shell (AShell) messages via APIX. Thanks to AShell, the data exchange of
the bidirectional APIX connection is error-free and secure.

Insert the address, the data size (8/ 16/ 32 bit) and the data to be written. Click the Write button to send a command or
the read button to read an AShell message.

Dragon Suite 85

12 File Manager Tool
Amongst other things, the FS (File System) software interface allows you to create, copy, delete, execute and search
files on the hardware. Thus, a uniform access to the OnBoard File System is possible. The Dragon Suite file manager
helps organize the File Systems of GÖPEL electronic devices.

On the left side of the file manager, the data files of the PC are listed. The right side shows the files of the GÖPEL
electronic device. On the upper right side there is a drop down menu with all available GÖPEL electronic interfaces.

The currently selected interface is displayed in the
text field of the drop down menu.

To copy a file from the PC to the device, select the
appropriate file on the left and the correct folder

on the right. Press to add this file to the

device. Use to download this file from the
device tp the PC. Right-clicking on a device file
(right side) opens a small menu with options for
deleting or renaming the selected file or to
creating a new folder.

Dragon Suite 86

13 IO Tool
Open the IO dialog by using one of the alternatives illustrated in chapter Using the GUI.

All available IO interfaces are listed in the drop
down menu.

13.1 Digital IO
This dialog window shows the digital inputs and outputs of the connected GÖPEL electronic hardware. Depending on
the connected hardware and its number of digital IOs the tab can display, for example, 6 digital outputs (basicCON
4121), 16 (GÖPEL electronic relay card) or even a different quantity.

If a digital input or output is set to 1, the control element of this input or output lights up green in the dialog. Is it set to
0, it does not light up. The digital outputs can be set manually in the dialog by setting the control element to 1 (lit
green) or 0 (not lit) by clicking on it. This does not apply to the digital inputs, here the control element is only used for
status indication.

Dragon Suite 87

13.2 Trigger
With the help of the IO tool, the trigger functionality can be controlled by configuring the trigger matrix. It is used to
assign a trigger source to a trigger output.

Seen across all GÖPEL electronic devices, there are a variety of possible trigger applications. This document only
discusses those trigger signals that are supported by the video devices basicCON 4121 and Video Dragon 6222.

The trigger source can be generated internally or
taken from an external input. The available sources
are listed in the drop down menu.

The following source values are possible:

Dragon Suite 88

Source Description
NO_SOURCE No source is set.
DIGITAL_IN The trigger signal is taken from a digital input.
SOFTWARE_OUT If the trigger source is assigned to a software output, the trigger signal can be

generated internally.
TRIGGER_BUS_IN If the trigger source is assigned to the trigger bus in, trigger signals of the trigger bus

line of a PXI, PCI or USB Rack are used for triggering.
LVDS_VIDEO_LOCK The LVDS video lock signal is used as trigger source.
LVDS_VIDEO_ACTIVE The LVDS video active signal is used as trigger source.
LVDS_GRABBER_READY The LVDS Frame Grabber ready signal is used as trigger source.
LVDS_GRABBER_COMPLETE The LVDS Frame Grabber complete signal is used as trigger source.
LVDS_GRABBER_ERROR The LVDS Frame Grabber error signal is used as trigger source.
LVDS_0_SER_DES_GPIO A GPIO signal of the serializer or deserializer board of the first LVDS interface is used as

trigger source.
LVDS_1_SER_DES_GPIO A GPIO signal of the serializer or deserializer board of the second LVDS interface is

used as trigger source.
LVDS_2_SER_DES_GPIO A GPIO signal of the serializer or deserializer board of the third LVDS interface is used

as trigger source.
LVDS_3_SER_DES_GPIO A GPIO signal of the serializer or deserializer board of the fourth LVDS interface is used

as trigger source.
LVDS_0_TRIGGER_OUT A trigger output signal of the first LVDS interface is used as trigger source.
LVDS_1_TRIGGER_OUT A trigger output signal of the second LVDS interface is used as trigger source.
LVDS_2_TRIGGER_OUT A trigger output signal of the third LVDS interface is used as trigger source.
LVDS_3_TRIGGER_OUT A trigger output signal of the fourth LVDS interface is used as trigger source.
UART_TX The UART output is used as trigger source.
UART_A The UART analyser is used as trigger source.
INTERNAL_SOURCE An internal source is used as trigger source.
SPI_M_MOSI The SPI Master Master Out Slave In is used as trigger source.
SPI_M_SCLK The SPI Master Serial Clock is used as trigger source.
SPI_M_SS0 The SPI Master Slave Select 0 is used as trigger source.
SPI_M_SS1 The SPI Master Slave Select 1 is used as trigger source.
SPI_M_SS2 The SPI Master Slave Select 2 is used as trigger source.
SPI_S_MISO The SPI Slave Master In Slave Out is used as trigger source.
LVDS_MI_0_MFP The LVDS media interface 0 multi function pin is used as a trigger source.

The possible trigger sources depend on the used Media Interface.

The trigger signals can be used internally or routed
to an output. The available outputs are listed in
the drop down menu.

The following output values are possible:

Dragon Suite 89

Source Description
TRIGGER_BUS_OUT If the trigger output is assigned to the trigger bus out, all trigger signals will be routed

to the dedicated trigger bus line that feeds all devices of one PXI, PCI or USB bus.
DIGITAL_OUT The trigger signals are routed to a digital output port. Further configuration options

for this parameter are explained below.
SOFTWARE_IN If the trigger output is assigned to a software input, the trigger signal can be used by

the communication interfaces of the device.
LVDS_GRABBER__START The LVDS Grabber device will start the capture operation when the trigger source is

active.
LVDS_GRABBER__STOP The LVDS Grabber device will stop the capture operation when the trigger source is

active.
LVDS_0_SER_DES_GPIO The trigger signals are routed to a serializer/ deserializer GPIO of the first LVDS

interface.
LVDS_1_SER_DES_GPIO The trigger signals are routed to a serializer/ deserializer GPIO of the second LVDS

interface.
LVDS_2_SER_DES_GPIO The trigger signals are routed to a serializer/ deserializer GPIO of the third LVDS

interface.
LVDS_3_SER_DES_GPIO The trigger signals are routed to a serializer/ deserializer GPIO of the fourth LVDS

interface.
LVDS_0_TRIGGER_IN The trigger signals are routed to the trigger input of the first LVDS interface.
LVDS_1_TRIGGER_IN The trigger signals are routed to the trigger input of the second LVDS interface.
LVDS_2_TRIGGER_IN The trigger signals are routed to the trigger input of the third LVDS interface.
LVDS_3_TRIGGER_IN The trigger signals are routed to the trigger input of the fourth LVDS interface.
UART_RX The trigger signals are routed to the UART input.
SPI_M_MISO The trigger signals are routed to SPI Master In Slave Out.
SPI_S_MOSI The trigger signals are routed to SPI Master Out Slave In.
SPI_S_SCLK The trigger signals are routed to SPI Slave Serial Clock.
SPI_A_MISO The trigger signals are routed to SPI Analyzer Master In Slave Out.
SPI_A_MOSI The trigger signals are routed to SPI Analyzer Master Out Slave In.
SPI_A_SCLK The trigger signals are routed to SPI Analyzer Serial Clock.
SPI_A_SS0 The trigger signals are routed to SPI Slave Select 0.
SPI_A_SS1 The trigger signals are routed to SPI Slave Select 1.
SPI_A_SS2 The trigger signals are routed to SPI Slave Select 2.
LVDS_MI_0_MFP The trigger signals are routed to the LVDS media interface 0 multi function pin.
UART_A The trigger signals are routed to the UART analyser.

The possible trigger outputs depend on the used Media Interface.

Depending on the source or output value, another
selection field automatically appears under the
dropdown lists. In most cases, this is just the input
field for a channel. Enter the necessary source or
target channel here. The count starts at 0. The
number of channels depends on your device.

Dragon Suite 90

If, for example, DIGITAL_OUT is selected as the
output, a configuration field opens. Here the digital
output value can be set to 0 or 1 (green).

In the middle of the dialog window there are three buttons:

Button Description
Load the current IO setting values of the selected interface.

Overwrite all current IO settings on the device with the settings displayed on the tabs of the window.

Reset all IO settings of the selected interface.

The trigger functionality of the devices offers a variety of configuration options. The software's IO tool offers
only a subset of this options. What options are also possible, can be read in the manual, in order to realize
this in own applications (if necessary).

The lower part of the dialog window contains a table with the currently set IO Trigger Connections. The channel
entries can be changed manually by clicking on the desired field and editing the value. Use the Apply button to set the
values. Click the Refresh button to load the actual settings.

By using the right click, one or all entries can be deleted from the list. This action also deletes the routed
trigger!
In addition, the table entry can be copied to the clipboard as a script command line by right clicking.

The IO Trigger connection table can also be found and edited in the Settings Window of the respective
hardware.

13.2.1 SerDes GPIO

Manual manipulating of the GPIO configuration needs an extreme good knowledge of the meaning of each
GPIO. Please contact the Göpel electronic Support to get help for this functionality.

An incorrectly configured device can be reset to its default values by a restart.

The GPIOs of the serializers and deserializers can be used for different configurations, depending on the Media Interface
board.
The SerDes GPIOs of the FPGA are directly connected to the serializers and deserializers.

Dragon Suite 91

The SerDes GPIOs of the FPGA can be defined as input or output (push / pull or open drain),in this case seen from the
FPGA.
If the two GPIOs to be configured are to be connected to each other, this must be done via IO triggering.

If SER_DES_GPIO is selected as trigger source or output, a larger configuration field opens.

The GPIOs can be used to trigger specific actions. In
the configuration field you can set the input/ output
controller pin configuration of the serializer/
deserializer board. For the Output Type of the SerDes
GPIO the following values are possible:
· input only
· push/ pull output mode
· open drain output mode

In addition, the configuration field contains two digital display segments: Input Value and Output Value. Input Value
shows only the on/ off value and can not be changed manually. If the value is 1, the item turns green. The Output
Value can only be changed if the output type is "push/ pull output mode" or "open drain output mode". The digital
value can be changed manually to on (green) or off.

With the button "Set" the SerDes GPIO configuration is
set. If the output value has been set to 1, the input
value now also goes to 1 (and turns green), since
output and input are internally connected.

13.2.2 Examples

Example 1: Routing Video Lock to Digital Output

The hardware used is an LVDS frame grabber. The trigger source is LVDS_VIDEO_LOCK on channel 0. As output the
digital output 2 is defined. With "Set" this configuration is set. As soon as a lock signal occurs, the digital output 2 is
activated.

Dragon Suite 92

Example 2: Routing SPI Analyzer to SPI Master for SPI Monitoring

To monitor SPI communication of the video device, the SPI Analyzer must be routed to the SPI Master signals.
Therefore route the targets SPI_A_MOSI, SPI_A_SCLK and SPI_A_SS0 to the sources SPI_M_MOSI,
SPI_M_SCLK and SPI_M_SS0. Now the SPI communication can be monitored in the Monitor Dialog.

The SPI monitor is only available in Dragon Suite Advanced.

Dragon Suite 93

14 CAN Tool
Open the CAN dialog by using one of the alternatives illustrated in chapter Using the GUI. In the upper tab the CAN node
can be initialized. The lower tab is for defining a CAN - UART Gateway.

All available CAN interfaces are listed in the drop down
menu.

14.1 CAN Node
After selecting the interface, the current values are displayed in the tab. Transceiver type and Transceiver slot are
immutable values.

Enter a baud rate value (in baud, e.g. 500000 for 500kBaud) and click the "SetBaudrate"-Button to set the baud rate of
the CAN node. CAN FD and Extended Identifiers can be enabled or disabled by setting the associated flags and clicking
the "Init"-Button. When using CAN FD, the CAN FD baud rate can also be set.

Dragon Suite 94

14.2 CAN - UART Gateway
The CAN - UART Gateway can be set to configure a gateway for gating CAN messages to UART and vice versa. Some test
devices can not communicate directly via CAN, e.g. to receive a wake-up message. The Video Dragon offers the
possibility to receive CAN messages via the CAN interface and to route them to a UART signal. The UART signal can then
be received and processed by the test device via the LVDS stream.

A configuration of the IO interface is necessary to use the CAN - UART Gateway (see example below).

For using the CAN - UART Gateway the Data Mode of the device must be set to "UART to serializer" or "UART
to deserializer".

The Gateway tab contains several flags for configuration:

Flag Description
ACK_ENABLE Enables the acknowledge handling. (Not supported yet)

UART_PARITY_CHECK_ENABLE Enables parity checking in received UART frames. Frames with a false
parity bit are disregarded.

UART_SW_LOOP_ENABLE If the flag is set, the received CAN messages are ignored and the received
UART messages are not gated to CAN. Received UART messages are
looped back to UART.

LENGTH_INCLUSIVE_LENGTH_BYTE If the flag is set, this length byte also contains the length byte itself in
addition to the number of bytes after the length byte. If the flag is not
set, it only contains the number of bytes after the length byte.

The parameter MaxRetries specifies the maximum number of TX repeats if no acknowledge is received. If the specified
maximum is reached, the frame is discarded. AckTimeout defines the time (in μs) to wait for an acknowledge before
repeating the message. In UartInstanceId a UART instance has to be defined, starting with 0. The UART parity can be
set to even, odd or none. Additionally the UART baud rate needs to be specified. By clicking the "Set"-Button the
parameters are written to the device. The "Reset"-Button resets the UART Gateway.

14.2.1 Example
This chapter shows a short example of the CAN - UART Gateway configuration. For this purpose, in addition to the CAN
configuration, the IO trigger interface must also be set. For this example, a G PCIe 6222 is used. The CAN configuration is

Dragon Suite 95

shown in the following picture:

In addition to the CAN configuration, it must of course be specified how the CAN signal is routed to the UART output. In
our example the GPIO 0 is used for the CAN signal (as source). The output is the UART_Rx signal.

Equivalently, the UART_Tx signal is set as source and routed to GPIO 3. Thus, a communication can take place in
both directions.

Dragon Suite 96

Dragon Suite 97

15 Sequence Interface
Open the Sequence Interface by using one of the alternatives illustrated in chapter Using the GUI.
Via the Sequence interface there is the possibility to record the execution of G API functions on a device and to save
them as a sequence. This sequence can be played repeatedly or set as the autostart sequence of the device.

All available Sequence interfaces are listed in the drop down
menu.

In general, the dialog is structured like the File Manager. However, the sequence files are not stored in the File Manager,
but have their own storage space. The files can be copied from the PC to the device and vice versa as in the File
Manager.
On the right side of the dialog window, the sequences on the device are listed. By right-clicking in the window, various
functions can be executed:

Icon Description

 playback sequence

Execute the sequence stored on the device (right click on the sequence file).

 record sequence

Start recording a sequence. All G API functions now executed will be recorded. Waiting
times between functions caused by manual input are reduced to a minimum. The
sequence is saved as a file in the Sequence Interface.

 stop sequence

Stop recording a sequence.

 enable autostart

The selected sequence is placed in the autostart of the device. At each restart the
sequence is executed after booting the device.

 disable autostart

After booting the device, no autostart sequence is executed.

 delete

Delete the sequence file.

 rename

Rename the sequence file.

 refresh

Refresh the file list.

Dragon Suite 98

16 Command Line Interface

The Dragon Suite provides the ability to work with the command line interface. Open the GUI-less Dragon Suite as
shown in the example below.

Dragon Suite 99

17 Dragon Suite Advanced
Some Dragon Suite features are only available for Dragon Suite Advanced . The features explained in this chapter can
only be used in advanced mode.

Category Feature BASIC ADVANCED Comment

Generator Config Basic configuration X X

SerDes + MiMfP GPIO config X

Grabber Config Basic configuration X X

SerDes + MiMfP GPIO config X

Generator Dialog RGB generating X X

YUV, RAW generating X coming soon

Generating on multiple channels simultaneously X coming soon

Advanced pattern generator X

Video output from file to PC or desktop (mirror) X X

Video output of recorded RAW data X coming soon

Grabber Dialog Basic capturing X X

Advanced color format conversion (Bayer, Grey 8+12
bit, YUYV-UYVY 8+10 bit)

X

YUV, with limited FR X

RAW data recording X

RAW data to AVI converter X

Grab on multiple channels simultaneously (raw) X

Sideband Dialog UART, I2C, SPI X X

Send/Receive Ashell Messages X

MII / Ethernet X coming soon

Monitoring CAN Monitor X

Sideband SPI Monitor X

Sideband I²C Monitor X coming soon

Sideband MII Monitor X coming soon

Sideband UART Monitor X

FS Interface File System interface X X

IO Interface r/w digital IOs X X

Trigger settings X X

Sequence Interface Sequence Interface X

Script Interface Script Interface X

CAN Interface Basic message functions X via Script
Interface

Ethernet Send/ Receive UDP frames per Fifo X via Script
Interface

The Advanced version of the Dragon Suite is only available through paid licenses, which you can purchase from our
sales team. The activation is done via the hardware activation of your Video Dragon. If a device with this activation is
detected when the software starts, it automatically opens in Advanced Mode. The activation can be done at any time,
even after the purchase of the hardware. A free trial license can also be requested from the sales department.

Dragon Suite 100

17.1 Script Interface
The Script Interface is used to run Java (ECMA) scripts to automatically control the functions of the Video Dragon
Hardware. Among other things, this includes configuring the Video Dragon, generating or capturing frames to file,
switching IOs, and communicating via sideband. This means that all work steps can be completed with just a few
clicks. With manual single steps the effort is considerably higher. In addition, all the manual steps must be carried out
again and again with each restart or hardware change. The Script Interface makes work easier not only in development,
but also in the manufacturing process.

For example, the following sequence can be performed with only one script:

· Configuring the LVDS interface
· Configuring register settings
· Configuring the Frame Grabber CAN - UART Gateway and SerDes GPIOs
· Sending I²C commands from the Frame Grabber to a connected camera
· Output I²C response strings
· Capturing frames to a file

All available LVDS interfaces are listed in the drop
down menu.

The interface to be addressed can be changed in the script with RefreshPorthandle();.

Thanks to syntax highlighting and autocompletion, creating the script is as easy as possible. Autocompletion is
intended for words longer than 2 characters. In addition, you can trigger the autocompletion with the shortcut Ctrl + E.

Dragon Suite 101

Enter "G." followed by Ctrl + E to access Dragon Suite and G-API methods. Use right-click to undo, copy
and replace, or to select the entire typing.

There are several buttons in the Script Dialog window:

Dragon Suite 102

Button Description

Load the script for the selected interface by importing an external Java (ECMA) script file (*.js).

Save the current script of the selected interface by exporting them to an external Java (ECMA)
script file (*.js).

Deletes the entries in the main window.

Starts the loaded script on the selected interface.

Open the Qt Script Debugger Tool and start debugging of the script.

Check the syntax of the script automatically and display found errors.

Open the Qt Script Debugger Tool

The Script Output gives feedback when the script is executed or displays any errors.

Below the script output you can find the information in which row and column of the main window the
cursor is located. This makes it easier to search for longer scripts.

The functions that can be used can be found in the Help

window on the right. Open or close it by using the
icon. The search for functions can be simplified by using
the lower input field.

The functions can be dragged and dropped into
the main window.

Script commands can be created directly from various tables in the Dragon Suite (such as the IO Trigger or
the MiMfp Tab). Right-click on the desired line entry and select "copy Script command to clipboard". Then
open the script window, right-click in the editing window and paste the command.

Dragon Suite 103

Some sample scripts can be found in the installation folder of the Dragon Suite.

17.2 Raw Data Recording
Raw Data Recording is a Frame Grabber feature. This is used to store and play back received raw data.

This feature is only supported for Video Dragon 6222.

Use Comment to insert a short note at the beginning of the RAW file. Select channel 1 or 2 and specify the resolution.

Also select whether to use DMA transfer.

Below are some buttons:

Dragon Suite 104

Button Description

Select path to the directory where the *.raw files will be stored.

Start recording the raw data and save it in the path specified before.

Load safed *.raw file.

Replay loaded raw data.

Converts raw data to AVI.

Each recorded file is saved with a common file header. The structure is as follows:

typedef struct{
u32_t version; //use current suite version for header version
u32_t headerSize;
u8_t numberOfChannels; //number of LVDS channels to capture and save
u8_t LVDSChannel[0xFF]; //the real selected LVDS channel
u8_t pixelmode[0xFF];
u32t width[0xFF]; //frame width
u32_t height[0xFF]; //frame height
u32_t dataSize[0xFF]; //per channel
u16_t reserved;
u8_t CSI2_dataType[0xFF];
u8_t virtualChannel[0xFF];
u32_t frameHeaderSize; //for image/frame data
u32_t framecounter[0xFF];
u32_t deviceFramecounter[0xFF]; //device frame counter differnce while

recording
qulonglong duration; //total duration in ms
char comment[0xFF]; //description for the file

u16_t reserved0;

}RawDataStreamFileHeader_t;

The single frames are stored in the following structure:

typedef struct{
u16_t version;
u16_t rows;
u16_t cols;
u8_t pixelmode;
u8_t CSI2_dataType;
u8_t virtualChannel;
u8_t dataChannel; //current channel in file
u32_t headerSize;
u32_t dataSize; //size of the video frame in Bytes
qulonglong timestamp;
u32_t frameNumber;
u16_t reserved0;

}RawDataStreamFrameHeader_t;

When loading the file you will find the header information in the right window.

To replay the file it is not necessary that the Frame Grabber is configured. However, it may be necessary to make
adjustments in the Capture Settings (Pixel Mode, Color Data Format). Select the desired channel before replaying (To

Dragon Suite 105

the right of the Replay button). Pressing the Replay button will play the loaded file once completely. During replay the
process can be stopped with the same button.

17.3 Monitor Dialog
With the Monitor feature CAN and SPI signals can be monitored.

Not every media interface supports all sideband functions mentioned here. Furthermore, sideband and/or
CAN must be activated for the device.

All available LVDS interfaces are listed in the drop
down menu.

The currently selected interface is displayed in the text field of the drop-down menu. Selecting the interface will
automatically open the corresponding tab.

17.3.1 CAN Monitor
Set the monitor settings before starting the monitor. Determine whether Rx signals, Tx signals or error frames should
be monitored. A combination of the signals is of course also possible. The monitored frames can be displayed
consecutively below each other or listed. Listed means that for each signal there is one monitor entry whose time
stamp is overwritten when this signal is repeated. Data block size indicates after how many bytes a line break occurs
(the value must be at least 8).

CAN Monitor - not listed & expand mode:

Dragon Suite 106

CAN Monitor - listed & no expand mode:

The signals can be displayed in expand mode or not. In expand mode, the data belonging to the signal ID is displayed
in a second line. Without this mode the data is hidden, but can be opened individually in the monitor field. To do so,
click on the small triangle to the left of the signal.

The displayed signal parameters are described in the following figure:

17.3.2 SPI Monitor/ SPI Analyzer
The API of the SPI Analyzer consists of two sections. The first section, SPI_A, configures the parameters, which are the

Dragon Suite 107

same for all monitors connected to this analyzer node and depend on the monitored SPI bus. These parameters
include:

· CPha (ClockPhase): Data is active on first or second edge
· DataWidth: Data width from 8 to 32 bits
· SS_Usage: Which SlaveSelect should be monitored (Bit0..SS0,Bit1..SS1,..)
· SS_Polarity: Which polarity do these SlaveSelects have (0..Low,1..High)
· SS_IdleTime: How long is the SlaveSelect at least inactive for the last SPI transfer to be considered completed (in

ns)

The clock polarity is determined automatically.

In the second API section, SPIA_Monitor, several monitors can be configured for one SPI Analyzer node. This can be
useful to allow each monitor to listen to its own SlaveSelect or a combination of SlaveSelects. The parameters are:

· BufferSize: internal buffer for monitor data
· SS_Enable: SlaveSelects observed by this monitor. They must be activated in the first API section (SS_Usage)

For the actual monitoring function it is necessary to route the inputs of the SPI Analyzer. For this we need the Clock,
MISO, MOSI and SlaveSelect signals. These are supplied with the appropriate signal sources via
TriggerSource_Set as corresponding targets. The routing can for example be like this:

· TargetType: SPI_A_SCLK (SPI Analyzer Clock Signal)
· TargetChannel: 0 (node ID of the SPI Analyzer)
· SourceType: LVDS_MI_0_MFP (Multifunctionional purpose pins of the Media Interface LVDS)
· SourceChannel: 10

Since the SPI Monitor is configured via the IO interface, the IO interface must be opened here. Additionally
the triggers must be configured correctly. Further information and examples can be found in the chapter IO
Tool and at the end of this chapter.

Dragon Suite 108

Set the monitor settings before starting the monitor. Determine whether MOSI signals, MISO signals or which SS
signals should be monitored. A combination of the signals is of course also possible. Since SPI communication often
requires two analyzer instances, instances 0 and 1 can be selected by checkboxes for the individual signals. Depending
on the selected signals, these are displayed in the monitor. In addition, an idle time can be set using the Reset button.
Data block size indicates after how many bytes a line break occurs (the value must be at least 8).

The name for Mosi/ Miso can be changed if necessary. To do this, click in the edit field and change the
designation to e.g. Rx and Tx.

The data is written to the monitor from bottom to top and from right to left. Use the button Descending
Order to change the data order.

The signals can be displayed in expand mode or not. In expand mode, the data belonging to the signal is displayed in a
second line. Without this mode the data is hidden, but can be opened individually in the monitor field. To do so, click
on the small triangle to the left of the signal.

Use the Save Button to save the monitor data to a *.txt file.

Dragon Suite 109

17.3.2.1 Example for SPI Monitor

For understanding, here is an example of configuring the SPI analyzer via the IO interface and sending a read command
to read the serial number of an APIX IC. For this purpose, a basicCON 4121 with INAP375T Media Interface board is used,
which communicates with an APIX deserializer.The following steps are done:

1. Set the IO triggers to configure the SPI analyzer. We want to read the sent and received messages with the monitor.
For this two analyzer instances must be configured. The first instance is for reading the sent messages (instance 0),
the second instance is for reading the received messages (instance 1). In the picture below you can see how the IO
triggers are connected to each other. The target channels represent the analyzer instances. For instance 0 we use
SPI triggers, for instance 1 the multifunctionional purpose pins are used as source.

2. There are two ways to read the data. The first is to use the Script Interface. The G-API function to read the AShell
message is included in the Script Interface. Adapted to our DUT the script command is
G.Lvds_Apix_AShellMsg_Read(0x10000, 2, 1, 0,0,0).

About the parameter values:The address is 0x10000 hex. Since the data size is 32 bit, the second value is "2". The
Read Index is defined as "1". Since we do not set a flag, the remaining three values are specified as "0". If the
command is packed in a G.print command, the answer is printed in the script output, in our case the serial
number of the IC.

The second option is to use the Indigo tab in the sideband window. Here also the address and the data size are
specified. The response (serial number) then appears in the data field.

Dragon Suite 110

3. The SPI messages can be read in the SPI Monitor. Before sending the AShell Read command the monitor must be
started (Start button). If we look at analyzer instance 0 (Mosi_0; Ss0_0), we see the sent data.

At analyzer instance 1 (Mosi_1; Ss0_1) we read the received data (from right to left). The serial number is 88463351.

Dragon Suite 111

17.3.3 UART Monitor/ UART Analyzer
For the actual monitoring function it is necessary to route the inputs of the UART Analyzer. These are supplied with the
appropriate signal sources via TriggerSource_Set as corresponding targets. The routing can for example be like
this:

· TargetType: UART_A (analyser)
· TargetChannel: 0 (node ID of the UART Analyzer)
· SourceType: LVDS_MI_0_MFP (Multifunctionional purpose pins of the Media Interface LVDS)
· SourceChannel: 25 (UART Tx signal for Serializer on Media Interface MAX9295_9296)

Since the UART Monitor is configured via the IO interface, the IO interface must be opened here.
Additionally the triggers must be configured correctly. Further information and examples can be found in
the chapter IO Tool and at the end of this chapter.

Set the monitor settings before starting the monitor. Parity and baud rate must match the values of the configured
UART FIFO. Distance to group indicates the value of the sampling. The lower the value, the more frequently the signal
is sampled and the messages are written to the monitor with a time stamp.

The data is written to the monitor from bottom to top and from right to left. Use the button Descending
Order to change the data order.

Use the Save Button to save the monitor data to a *.txt file.

17.3.3.1 Example for UART Monitor

For understanding, here is an example of configuring the UART analyzer via the IO interface and sending a read
command to read the serial number of an IC. For this purpose, a Video Dragon 6222 with MAX9295 serializer is used,

Dragon Suite 112

which communicates with an MAX9296 deserializer.The following steps are done:

1. Set the IO triggers in the IO Dialog window to configure the UART analyzer. We want to read the device identifier of
the deserializer. For this we have to pass the incoming Rx signal of the serializer to the UART analyzer. In the picture
below you can see how the IO triggers are connected to each other. The target channel represent the analyzer
instance. The Rx signal of the MAX9295 serializer is on MFP pin 26, which is specified as the source channel.

2. There are two ways to read the data. The first is to use the Script Interface. A FIFO is used for UART
communication. To read a register, a write command must be executed first. The G-API function to write this
command is included in the Script Interface. Adapted to the Deserializer the script command is
G.Io_Uart_Fifo_TxFifo_Write(0,[0x79,0x91,0x00,0x0D,0x01]).

About the parameter values: The first Byte 0x79 is the synchronization Byte. 0x91 is the device address in
combination with the read command (last Bit). The register address is 0x00,0x0D (two Byte). The last Byte (0x01) is
the number of Bytes to read.

The second option is to use the UART tab in the sideband window.

3. The UART Rx messages can be read in the UART Monitor. Before sending the Read command the monitor must be
started (Start button). The received data is 0xC3, 0x94. 0xC3 is the acknowledge Byte, 0x94 is the register value.

Dragon Suite 113

17.4 MiMfp Config Tab

Use this tab to configure the Multifunctional Pins of the installed Media Interface. Each media interface has a different
meaning of the MFP pins. An overview of the MFP pins of the individual media interface boards can be found in the
Video Dragon 6222 manual.

This feature is only supported for Video Dragon 6222.

Manual manipulating of the MFP configuration needs an extreme good knowledge of the meaning of the
pins. Even a single wrong setting of only one pin may render the complete configuration invalid and the
device inoperative. Please make sure to consult with the Göpel Support Team before use.

This tab has the following parameters:

Dragon Suite 114

Parameter Description
SerDes Gpio-index MFP pin number.

IocOutputType Each pin can be defined as input or as output (seen from the FPGA). The output can be defined
as push/pull or open drain mode. The pin is then driven by the FPGA.

IocOutputMode If the pin is defined as output, the value can be set via the Output Mode.
· set: OutPut Value = high
· reset: OutPut Value = low
· toggle: OutPut toggles between high and low

IocInputValue Shows the actual input status at the pin. This is a read only value.
· green = high
· grey = low

IocOutputValue Shows the actual input status at the pin. This is a read/ write value. By clicking on the round
button the output value can be manually set to high (green) or low (grey).
Since the status of the pin in the device is updated immediately when changes are made in the
tab, this is the fastest way to change the output value.

Active This is an indicator whether the setting for the MFP pin should be saved in the
serializer/deserializer configuration file. Also, when you click Apply to HW, only the active pins on
the hardware are overwritten.
· green = active
· grey = not active

Right-clicking into the tab gives the following options:

Option Description
Load all pins from device Loads all pin configurations from the device and sets all Active indicators to low.

(Attention: Using the button Load current values sets all Active indicators to high.
When saving the settings to a file every MFP pin will be saved now. This can lead to
faulty behavior when the file saved in this way is loaded onto the device.)

Apply table to hardware Applies actual table to the hardware, no matter if the Active indicators are high or
low.

Copy script command to
clipboard

Right-click on the desired MFP pin and select this option. This will automatically
copy the appropriate script command to the clipboard and can be pasted into the
Script Interface.

Dragon Suite 115

18 Additional Features

18.1 TCP Remote Control
Via TCP a remote access to the script interface of the Dragon Suite is possible. For this, one or more script engines run
on the TCP server to execute scripts. These scripts are transmitted from the client to the server using JSON format.

This feature is chargeable. A Dragon Suite Advanced license is also required for this feature.

18.1.1 Server Settings

The server settings must be set once in Dragon Suite before starting the transfer.

1. Open the Automation Settings via the toolbar icon .

2. Set a server address and the server port. Optionally set the default path where the scripts are located. Enable
Heartbeat sends a regular signal from the server. When Verbose Mode is selected, the server outputs all incoming
and outgoing messages to the console. This helps with debugging.

3. These settings must be saved in a *.ini file via the Save Settings button. Once saved, the settings can also be
loaded via the Load Settings button.

4. The server can be started by clicking the Start Server button. Now the client can connect to the server.

The server can also be opened via the Windows Console.
dragonSuite.exe -startServer (starts as default)
dragonSuite.exe -startServer:*.ini (loads the previously saved *.ini file)

Dragon Suite 116

18.1.2 Client Settings

Only one client can connect to the TCP server.

Once the server is running, a client can communicate with it. In the TCP Automation examples there is a LabVIEW VI
which is used to display the client: "TCP_Client3.vi" as shown below.

With the help of this example, the steps to communicate with the server are described:

1. An IP connection to the server should be established from the client. So the IP address and port of the server are
specified first.

2. A command must be defined. There are also some examples for this inJSON file format . A file can also be
imported directly via the VI.

3. When sending a command, the following control data always should be added : 0x02 as control (1
Byte) + payload length (4 Bytes) + payload (JSON string as Byte
array). This can happen in the example VI by the appropriate selection.

4. The command is now sent. The response message from the server is output in the response field.

18.1.3 Remote control

In the following, the JSON messages are presented as follows:

Message sent by the client

Message received from the client

The TCP connection has the following scheme:

Dragon Suite 117

To communicate with the server JSON messages are sent to the server via the client. The server acknowledges every
client request. In addition, the server can optionally send a heartbeat every second. As soon as the server is started and
the client has established the TCP connection to the server, the heartbeat is visible on the client side. Now the Script
Engine can be initialized. The initialization must always be done to operate with the Script Engine. For this purpose, the
instance of the engine must be defined. At the moment only one instance can be opened. The application with
multiple instances will come soon. The command to initialize the engine should look like this:

{
 "msgId":"4",

"instance": "0",
 "commands": {
 "initScriptEngine": {

"InterfaceName": "LVDS1" //opens interface LVDS1 in Script Engine
 }
 }
}

In all future messages, the command will be assigned via the instance of the correct Script Engine. After initializing the
Script Engine, you can execute

· script code:

{
"instance": "0",

 "commands": {
 "execScriptCode": {

 "scriptCode": "G.print(\"Hallo World\")"
 }
 }
}

· script files:

{
 "msgId": "INIT_DUT",
 "instance": "0",
 "commands": {
 "initScriptEngine": {
 "InterfaceName": "LVDS1"
 },
 "execScriptfile": {
 "ScriptName": "INIT_DUT.js"
 }
 }
}

Dragon Suite 118

Remote scripts should always be tested directly in the Dragon Suite script interface first to make sure they
work.

· or mathematical operations:

for(var i=0; i<10;i++){
G.sendJsonStringToClient("Hello World "+ i + " from Script ");
delay(1000000);
}

Although both are possible, G.print() should not be used to communicate with the client.
G.sendJsonStringToClient(myJSON) is recommended.

In the script, no functions can be called that, for example, display an image.

The script engine executes the command and responds with

· a message. The following messages from server and Script Engine are possible:

typedef enum{

 TYPE_ERROR = 0,
 TYPE_MESSAGE,
 TYPE_STATUS,// e.g. Client connected to server
 TYPE_SCRIPT_STATE,
 TYPE_SCRIPT_ERROR,
 TYPE_SCRIPT_INFO,
 TYPE_SCRIPT_PROGRESS,
 TYPE_SCRIPT_OUTPUT // e.g. of G.print("")
}ServerToClientMessageType_t;

Example:

{
 "Script_output": "Hello World",
 "message type": 7,
 "timestamp": 1649682124
}

· or an error message. The following errors from server and Script Engine are possible:

typedef enum{

 No_Error = 0,
 Invalid_Json,
 JsonStringNoObject

}automation_error_t;

Example:

{
 "Scripte_error": "Error :0x0009020D - FW - LVDS - data - no acknowledge
 23 02 10 00 01 01 00 00 00 00 00 60 06 00 00 00",
 "message type": 4,
 "timestamp": 1649682259
}

Dragon Suite 119

The deinitialization of the Script Engine is done by:

{
 "msgId":"5",

"instance": "0",
 "commands": {
 "deInitScriptEngine": {

"value":"doIt"
 }
 }
}

In addition, it is sometimes necessary to stop the scripts if for example they endlessly run a loop:

{
 "msgId":"3",
 "commands": {
 "stopAllScripts": {
 "instance": "0"
 }
 }
}

The message ID can be freely assigned. This is always returned with the script output. This allows the affiliation of the
response to the command to be traced.

18.1.4 Tray mode
There is a possibility to use the TCP connection while Dragon Suite is running only in the background. This means you
can put the application completely into the Windows tray.
If this is to happen when the server is started automatically, it must be saved in the configuration. For this start in tray
mode must be set when saving the configuration.

To test the functionality or to pack the Dragon Suite window into the background, you can also simply use the move to
tray button.

To reopen the window, open the Windows tray (usually located in the lower right corner on the toolbar) and go to the
Dragon logo. Double click on the logo or use right click and then click on Restore.

Dragon Suite 120

19 First Steps
Prerequisite for these steps is a successful installation of the G-API and the Dragon Suite.

The supported basicCON 4121 and Video Dragon 6222 devices can be used with different Media Interface
Modules and must be configured differently. For this chapter, it is assumed that a DS90UB954 deserializer
module is installed in a G PCIe 6222 Board, and a compatible video source is already set up and ready for
use.

19.1 System Structure

1. Install the appropriate module on the main board (in this example it is DS90UB954). (Typically, this step is not
required because a module is already installed at delivery.)

2. Install the GÖPEL electronic device in your (switched off) test system or your PC.

3. Connect your video source to the input connector of the GÖPEL electronic device using the supplied video cable.

4. Switch on the test system and thus the GÖPEL electronic device. As soon as the device is ready, LED2 starts
flashing.

19.2 Registration
Before you can use the GÖPEL electronic device for the first time, it must have been registered in the G-API. The G-API is
responsible for all future communication between the control PC or laptop and the GÖPEL electronic device. This
registration is simply done by starting the HardwareExplorer. The following figure shows a G PCIe 6222 board with four
interfaces:

The GÖPEL electronic device can be seen in the left column with all available software interfaces. If several devices are
connected, the corresponding device can be identified by its serial number, which is shown in parentheses. The name
of the LVDS interface (e.g., "LVDS1") is important to the following steps.

Dragon Suite 121

For more information about the G-API, its installation, and the Hardware Explorer, see G-API Quickstart
Guide.

19.3 Configuration
Before the capturing of frames is possible, the device must be configured according to the currently transmitted video
signal.

1. Start the GÖPEL electronic Dragon Suite software. On the left side in the Interface Tree the G PCIe 6222 Board and
its interfaces appear, similar to the HardwareExplorer.

2. The icon opens the Settings Window for the Frame Grabber. Select the corresponding LVDS interface as
Interface Name from the preselection of the drop-down list (here "LVDS1").

All settings for the deserializer can be made in this dialog.

3. After selecting the LVDS interface, the values in the configuration window are overwritten with the current values of
the GÖPEL electronic device automatically. The current configuration parameters can also be loaded into the
settings window via the button "Load current values".

4. Enter the desired resolution in "Capture Area". This must not be higher than the resolution of the incoming frame.
Confirm this entry with the button "Apply to HW".

5. Switch to the LVDS Channels tab and adjust the parameters of the physical channels according to your test
requirements. Confirm this entry with " Apply" in the lower right corner of the dialog box.

Dragon Suite 122

6. In most cases, the configuration registers of the deserializer must be adapted to the test environment. In this
example, the registers are written using I²C communication. Switch to the Sideband Settings tab and change the
Data Mode to "I²C Master to Deserializer". Adjust the other parameters (baud rate etc.) according to your test
requirements. Confirm this entry with the button " Apply to HW".

7. Open the Sideband Communication Window with the icon . Also select the LVDS interface here ("LVDS1").
The tab for I²C opens automatically if the Data Mode was successfully overwritten before.

Dragon Suite 123

Here, the configuration registers of the deserializer can be read out and overwritten. Reading is done by entering
the device address and register address and the "Read Registers" button. Save the table with "Save Table". Now
you can change the desired tabs in the saved text file. With "Import Data" the changed list is imported again and
by clicking on "Write Registers" the registers of the deserializer are changed.

The device is now configured and ready to capture frames.

19.4 Capturing

The icon opens the Frame Grabber Dialog Window. It is possible to capture both single frames and a sequence
of frames.

The icon captures a single frame from the video stream and displays it in the dialog window. The capturing of a

sequence of frames is started by pressing the icon . After each captured frame of the sequence, the dialog
window is updated to show the frame being captured.

Your Video Dragon and also the Dragon Suite offers a multitude of additional functions. In this chapter,
only general instructions for working with the device could be given by way of example.

Dragon Suite 124

20 Common Error Messages
The following table shows common G-API error messages and how to fix them:

Error Code Error Message Description
0x000000E0 FW - function not

available
The selected feature (e.g., Sideband Communication or CAN) is not activated
for this device.

0x00090002 LVDS - capturing not in
progress

The deserializer does not receive image data from the serializer. Check the lock
between serializer and deserializer. The cause may also be due to a bad signal,
so that a frame grabber has difficulty capturing. Also check the connection
between the PC and the device.

0x00090006 LVDS - no video lock There is no lock between serializer and deserializer. Make sure the
configurations of the devices match. In most cases, the Signal Levels
(Polarities) or the Control Signals (HSync, VSync, DataEnable) do not match.

0x00090007 LVDS - initializing after
lock lost

The link between serializer and deserializer was lost. This must now be
reinitialized. The cause may be due to a bad signal, so that a frame grabber has
difficulty capturing. Also check the connection between the PC and the device.

0x0009010A LVDS - config - capture
area bigger than frame

The defined Capture Area of the Frame Grabber is larger than the transmitted
video frame.

0x00090201 LVDS-data-
extensionboard function
not available

One of the selected modes is not supported for the serializer/ deserializer.

0x0009020D LVDS - data no
acknowledge

The device receives no response from the receiver during sideband
communication (e.g., I²C). There may be no connection or the recipient
address is incorrect.

0x0206000D LVDS-sync error-
videolock not active

There is no lock between serializer and deserializer. Make sure the
configurations of the devices match. In most cases, the Signal Levels
(Polarities) or the Control Signals (HSync, VSync, DataEnable) do not match.

0x2000107 API - event timeout The command triggered a timeout in the G-API. There was no frame at the
grabber input. The cause may be due to a bad signal, so that a frame grabber
has difficulty capturing. Also check the connection between the PC and the
device.

0x2000205 API - no response from
device

The G-API has lost connection to the device. The cause maybe due to a bad
signal, so that a frame grabber has difficulty capturing. Also check the
connection between the PC and the device.

Some error messages can occur at the same time and have the same cause. This is because some applications call
multiple functions of the G-API, and then each returns an error.

Please make sure to keep the G-API and the Dragon Suite up to date. This can prevent some errors.

Always check the connection between the PC and the GÖPEL electronic device. We recommend the use of
Ethernet. A USB2.0 connection, for example, is too slow to achieve error-free capture. It may also be
necessary to restart the device.

Dragon Suite 125

21 Service and Support

21.1 Spare Parts and Accessories

If necessary, please contact our sales department:

GÖPEL electronic GmbH
ATS-Vertrieb
Göschwitzer Str. 58 / 60
D-07745 Jena
Tel.: +49-3641-6896-508
E-Mail: ats.sales@goepel.com
https://www.goepel.com

21.2 Warranty and Repair

21.2.1 Conditions

We guarantee the accuracy of the test system for a period of 24 months from the date of sale. The warranty does not
apply to errors that are based on improper interventions or changes or improper use.

21.2.2 Identification

Furthermore, we ask you to announce possible warranty cases as such. Repair orders without reference to an existing
warranty claim will in any case initially be paid. If the warranty has expired, we will of course also repair your test
system in accordance with our general installation and service conditions.

If necessary, please contact our support service:

GÖPEL electronic GmbH
ATS-Support
Göschwitzer Str. 58 / 60
D-07745 Jena
Tel.: +49-3641-6896-597
E-Mail: ats.support@goepel.com
https://www.goepel.com

mailto:ats.sales@goepel.com
https://www.goepel.com
mailto:ats.support@goepel.com
https://www.goepel.com

Dragon Suite 126

22 Disposal

22.1 Disposal of used Electrical / Electronic Equipment

The device implements the following EU directives:

· 2012/19/EU (WEEE) Waste Electrical and Electronic Equipment and

· 2011/65/EU on the restriction of the use of certain hazardous substances in electronic equipment (RoHS directive)

At the end of the life of the device, this product must not be disposed of with other household waste. The improper
disposal of this type of waste can have a negative impact on the environment and health due to the potential
hazardous substances in electrical and electronic equipment. Dispose of the product at a suitable collection point.

When disposing of the device in countries outside the EU, local laws and regulations must be observed.

22.2 Disposal of used Disposable / Rechargeable Batteries

At the end of the service life of disposable/ rechargeable batteries, these must not be disposed of with the normal
household waste. Dispose of the disposable/ rechargeable batteries at a recycling center for disposable batteries and
rechargeable batteries.

Please dispose of only discharged disposable/ rechargeable batteries.

	1 Copyright
	2 Dragon Suite Change Log
	3 Documentation History
	4 Introduction
	4.1 Symbols
	4.2 Liability and Warranty Exclusion

	5 Installation
	5.1 Supported Hardware
	5.2 Prerequisites
	5.2.1 System Requirements
	5.2.2 Hardware Installation

	5.3 Software Installation
	5.4 Update Manager

	6 Using the GUI
	6.1 Menu Bar
	6.2 Toolbar
	6.3 Interface Tree
	6.4 Main Frame
	6.5 Message Box

	7 Setting up the Frame Generator
	7.1 General
	7.2 Signal Levels
	7.3 Signal Routing
	7.4 SerDes Config
	7.5 External Board
	7.6 Sideband Settings
	7.6.1 UART
	7.6.2 I²C
	7.6.3 SPI

	7.7 LVDS Channels
	7.7.1 Open LDI Mode
	7.7.2 RxTx Loop

	7.8 IO Routing
	7.9 Ethernet
	7.9.1 Example

	7.10 LVDS Info

	8 Frame Generator Dialog Window
	8.1 Files on the Device
	8.2 Display color
	8.3 Display Direct
	8.4 Video Preview
	8.5 Pattern Generator
	8.5.1 Advanced Pattern Generator

	9 Setting up the Frame Grabber
	9.1 General
	9.2 Signal Levels
	9.3 Signal Routing
	9.4 SerDes Config
	9.5 External Board
	9.6 Sideband Settings
	9.7 LVDS Channels
	9.7.1 Open LDI Mode
	9.7.2 RxTx Loop

	9.8 IO Routing
	9.9 Ethernet
	9.10 LVDS Info
	9.10.1 LVDS Information of basicCON 4121
	9.10.2 LVDS Information of Video Dragon 6222

	10 Frame Grabber Dialog Window
	10.1 Tool Box
	10.2 Capture Settings
	10.3 Compare Settings
	10.4 Avi Settings
	10.5 Raw Data Recording
	10.6 Frame Area

	11 Sideband Communication
	11.1 Configuration of Sideband Communication via G-API
	11.1.1 Setting the Data Mode
	11.1.2 Setting the Parameters

	11.2 I²C Master Mode
	11.2.1 Communication
	11.2.1.1 I²C Transfer on the Bus
	11.2.1.2 I²C Transfer by Command
	11.2.1.3 I²C Protocol

	11.3 I²C Slave Mode
	11.3.1 Communication
	11.3.1.1 I²C Slave Definition by command

	11.4 SPI Mode
	11.5 SPI Master Mode
	11.5.1 Communication
	11.5.1.1 SPI Transfer on the Bus
	11.5.1.2 SPI Transfer by Command

	11.6 SPI Slave Mode
	11.6.1 Communication

	11.7 SPI Dual Mode
	11.7.1 Communication
	11.7.1.1 SPI Transfer by Command

	11.8 UART Mode
	11.8.1 Communication of basicCON 4121
	11.8.1.1 UART Transfer by Command

	11.8.2 Communication of Video Dragon 6222

	11.9 Sideband Communication Tool
	11.9.1 UART
	11.9.2 I²C
	11.9.3 SPI
	11.9.4 Indigo

	12 File Manager Tool
	13 IO Tool
	13.1 Digital IO
	13.2 Trigger
	13.2.1 SerDes GPIO
	13.2.2 Examples

	14 CAN Tool
	14.1 CAN Node
	14.2 CAN - UART Gateway
	14.2.1 Example

	15 Sequence Interface
	16 Command Line Interface
	17 Dragon Suite Advanced
	17.1 Script Interface
	17.2 Raw Data Recording
	17.3 Monitor Dialog
	17.3.1 CAN Monitor
	17.3.2 SPI Monitor/ SPI Analyzer
	17.3.2.1 Example for SPI Monitor

	17.3.3 UART Monitor/ UART Analyzer
	17.3.3.1 Example for UART Monitor

	17.4 MiMfp Config Tab

	18 Additional Features
	18.1 TCP Remote Control
	18.1.1 Server Settings
	18.1.2 Client Settings
	18.1.3 Remote control
	18.1.4 Tray mode

	19 First Steps
	19.1 System Structure
	19.2 Registration
	19.3 Configuration
	19.4 Capturing

	20 Common Error Messages
	21 Service and Support
	21.1 Spare Parts and Accessories
	21.2 Warranty and Repair
	21.2.1 Conditions
	21.2.2 Identification

	22 Disposal
	22.1 Disposal of used Electrical / Electronic Equipment
	22.2 Disposal of used Disposable / Rechargeable Batteries

