

Product Specification

smartCAR
with extended Command Set

USB 2.0 Stand-alone Device for
CAN, LIN or K-LINE Interface

User Manual Version 1.2

GOEPEL electronic GmbH
Goeschwitzer Str. 58/60
D-07745 Jena
Phone: +49-3641-6896-597
Fax: +49-3641-6896-944
E-Mail: ats_support@goepel.com
http://www.goepel.com Get the tota l Coverage!

Issue: December 2011

© 2011 GOEPEL electronic GmbH. All rights reserved.

The software described in this manual as well as the manual itself are supplied under license and
may be used or copied only in accordance with the terms of the license.
The customer may make one copy of the software for safety purposes.

The content of the manual is subject to change without prior notice and is supplied for information
only.
Hardware and software might be modified also without prior notice due to technical progress.

In case of inaccuracies or errors appearing in this manual, GOEPEL electronic GmbH assumes
no liability or responsibility.

Without the prior written permission of GOEPEL electronic GmbH, no part of this documentation
may be transmitted, reproduced or stored in a retrieval system in any form or by any means
as well as translated into other languages (except as permitted by the license).

GOEPEL electronic GmbH is neither liable for direct damages nor consequential damages from
the company’s product applications.

Printed: 05.12.2011

All product and company names appearing in this manual are trade names or registered trade names of their respective owners.

Table of Contents

 smartCAR – User Manual I

1 INSTALLATION .. 1-1

1.1 HARDWARE INSTALLATION ... 1-1
1.2 DRIVER INSTALLATION .. 1-2

2 HARDWARE ... 2-1
2.1 DEFINITION ... 2-1
2.2 TECHNICAL SPECIFICATION .. 2-2

2.2.1 Dimensions .. 2-2
2.2.2 smartCAR Characteristics... 2-2

2.3 CONSTRUCTION .. 2-3
2.3.1 General .. 2-3
2.3.2 Addressing ... 2-3
2.3.3 Change of Transceivers ... 2-4
2.3.4 Communication Interfaces 2-4
2.3.5 Connector Assignments ... 2-6

2.4 DELIVERY NOTES... 2-7
3 CONTROL SOFTWARE .. 3-1

3.1 PROGRAMMING VIA G-API ... 3-1
3.2 PROGRAMMING VIA DLL FUNCTIONS 3-1

3.2.1 Windows Device Driver ... 3-2
3.2.1.1 Driver_Info ... 3-3
3.2.1.2 DLL_Info .. 3-4
3.2.1.3 Write_FIFO ... 3-5
3.2.1.4 Read_FIFO ... 3-6
3.2.1.5 Read_FIFO_Timeout .. 3-7
3.2.1.6 Write_COMMAND .. 3-8
3.2.1.7 Read_COMMAND... 3-9

3.3 PROGRAMMING WITH LABVIEW .. 3-10
3.3.1 LabVIEW via G-API ... 3-10
3.3.2 LLB using the Windows Device Driver 3-10

3.4 FURTHER GOEPEL SOFTWARE ... 3-10
3.5 USB CONTROLLER CONTROL COMMANDS 3-11

3.5.1 USB Command Structure 3-11
3.5.2 USB Response Structure .. 3-11
3.5.3 USB Commands .. 3-11

Installation

 smartCAR – User Manual 1-1

1 Installation

1.1 Hardware Installation
Generally hardware installation for smartCAR means exchanging the
transceiver modules.

Please make absolutely certain that all of the hardware installation
procedures described below are carried out with your system
switched off.

If it is necessary to exchange transceiver modules, no intervention in
the smartCAR device is required (see Change of Transceivers).
Doing this, pay attention to the general rules to avoid electrostatic
discharging.

Installation

1-2 smartCAR – User Manual

1.2 Driver Installation
For proper installation of the GOEPEL electronic USB drivers on your
system, we recommend to execute the GUSB driver setup.
To do that, start the GUSB-Setup-*.exe setup program (of the
supplied CD, “*” stands for the version number) and follow the
instructions.

Your smartCAR can be operated under Windows® 2000/ XP
as well as under Windows® 7/ 32 Bits and Windows® 7/ 64 Bits.

If you want to create your own software for a smartCAR, you possibly
need additional files for user specific programming (*.LLB, *.H).
These files are not automatically copied to the computer and have to
be transferred individually from the supplied CD to your development
directory.

The USB interface uses the high-speed data rate according to the
USB2.0 specification (if possible, otherwise full-speed).

After driver installation, you can check whether the device is properly
embedded by the system.
The following figure shows the successful embedding of a smartCAR:

Please note that the Device Manager shows ALL USB controllers.

Figure 1-1:
Display of Device Manager

Hardware

 smartCAR – User Manual 2-1

2 Hardware

2.1 Definition
smartCAR is a GOEPEL electronic GmbH stand-alone device with USB 2.0
interface to be connected to a PC or laptop.
It was in particular developed for applications out of complex test
systems (for example in garages).

smartCAR offers the following resources:

♦ 1 x CAN or 1x LIN or 1x K-Line
♦ 32bit µController onBoard
♦ USB 2.0 Interface
♦ Power supply optionally via the USB interface or externally
♦ High flexibility by exchangeable transceiver modules

Please note that your smartCAR DOES NOT provide electric
isolation between the USB system and the user interface.
Therefore, the UUT and all other devices connected with the
smartCAR have to supplied either by isolated power supply units
or all involved devices have to be connected to the same ground
potential in a star-shaped manner.

Figure 2-1:
smartCAR

Hardware

2-2 smartCAR – User Manual

2.2 Technical Specification

The dimensions of your smartCAR are given as follows
(width x height x depth):

♦ 75 mm x 25 mm x 110 mm

The smartCAR characteristics are shown in this table:

Symbol Parameter Min. Typ. Max. Unit Remarks

UBAT Power supply 8 27 V Via USB interface or externally

 Transmission rate 1 MBaud For CAN or

 Transmission rate 22 kBaud For LIN or

 Transmission rate 150 kBaud For K-Line

Rbus Terminating resistor 120 Ohms For CAN or

RPullup Pull-up resistor 1000 Ohms For K-Line

2.2.1 Dimensions

2.2.2 smartCAR
Characteristics

Hardware

 smartCAR – User Manual 2-3

2.3 Construction

Figure 2-2 shows schematically the construction of a smartCAR:

Figure 2-2: Block diagram of a smartCAR device

Please use only the delivered USB cable to connect your smartCAR
device to the PC’s USB interface.
Other cables may be inapplicable.

In case of using several smartCAR devices at the same PC the
individual device is exclusively addressed according to its serial
number (see Control Software):
The device with the LEAST serial number is always the device with
the number 1.

To improve clarity, we recommend to connect the individual
smartCAR devices with the same PC in the order of ascending serial
numbers.

2.3.1 General

2.3.2 Addressing

Hardware

2-4 smartCAR – User Manual

Figure 2-3 demonstrates the mechanical join between smartCAR’s
main module and transceiver module.
To change the transceiver module, separate the assembled one by
top-bottom traction from the main module.

2 x CAN-Interface Version 2.0b:
The type of the mounted transceiver is decisive for proper operation
of a CAN interface in a network. Often CAN networks do only
operate properly in the case that all members use a compatible type
of transceiver.
To offer maximal flexibility to the users of the smartCAR device, the
transceivers are designed as plug-in modules.
There are several types (high speed, low speed, single-wire etc.) that
can be easily exchanged (see Figure 2-3).
Ubat is the internal connection for the power supply of the transceiver
modules.

2.3.3 Change of
Transceivers

Figure 2-3
Change of Transceiver

module

2.3.4 Commu-
nication Interfaces

Figure 2-4:
CAN interface

Hardware

 smartCAR – User Manual 2-5

K-Line Interface (ISO 9141)
The transceiver is designed as a plug-in module.
Generally, the L9637 of ST is used for this type of transceiver.
Ubat is the internal connection for the power supply of the transceiver
module.

LIN-Interface Version 2.0:
The transceiver is designed as a plug-in module.
Generally, the TJA1020 of Philips is used for this type of
transceiver.
It is possible to change over between Master and Slave configuration
per software using the relay with number 2.
Ubat is the internal connection for the power supply of the transceiver
module.

Abbildung 2-5
K-Line interface

Figure 2-6:
LIN interface

Hardware

2-6 smartCAR – User Manual

For the access to the communication interface there is the RJ45 socket
at the front side of your smartCAR device.
You may also use the SubD plug of the delivered cable.

Communication Interface
Type: RJ45 female
The assignments are shown in the following table:

Pin CAN K-Line/ LIN

1 Ubat Ubat

2 n.c. n.c.

3 CAN-High n.c.

4 CAN-Low n.c.

5 n.c. K-Line/ LIN

6 n.c. n.c.

7 n.c. n.c.

8 GND GND

Type: DSub 9 poles male (at the cable)
The assignments are shown in the following table:

Pin CAN K-Line/ LIN

1 n.c. n.c.

2 CAN-Low n.c.

3 GND GND

4 n.c. n.c.

5 n.c. n.c.

6 n.c. n.c.

7 CAN-High K-Line/ LIN

8 n.c. n.c.

9 Ubat Ubat

USB Interface
At smartCAR’s rear side there is the miniUSB-socket (with USB
standard assignment) for the USB 2.0 interface.

2.3.5 Connector
Assignments

Hardware

 smartCAR – User Manual 2-7

2.4 Delivery Notes
A smartCAR delivery includes at least

♦ 1x smartCAR Main module and 1x smartCAR Transceiver module

At present the following types of Transceiver modules are available:

♦ 1x TJA1041 CAN Highspeed
♦ 1x TJA1054 CAN Lowspeed
♦ 1x AU5790 CAN Single Wire
♦ 1x L9637 K-Line
♦ 1x TJA 1020 LIN

When ordering a smartCAR, please give also a note regarding the
type of the required Transceiver module.

Only by exchanging the Transceiver module (see Figure 2-3) you
decide whether the smartCAR hardware interface is working as a
CAN, LIN or K-Line interface.

Control Software

 smartCAR – User Manual 3-1

3 Control Software
There are three ways to integrate the smartCAR hardware in your
own applications:

♦ Programming via G-API
♦ Programming via DLL Functions
♦ Programming with LabVIEW

3.1 Programming via G-API
The G_API (GOEPEL-API) is the favored user interface for this
GOEPEL hardware.
You can find all necessary information in the G-API folder of the
delivered CD.

3.2 Programming via DLL
Functions

Programming via DLL Fuctions is possible also in future for existing
projects which can not be processed with the GOEPEL electronic
programming interface G-API.

We would be pleased to send the GOEPEL Firmware documentation to
you on your request. Please get in touch with our sales department in
case you need that.

The GUSB_Platform expression used in the following function
description stands for one individual smartCAR device.

For the used structures, data types and error codes refer to the
headers – you find the corresponding files on the supplied CD.

In this User Manual, Controller means ALWAYS the micro controller
assigned to the CAN, LIN or K-Line interface of a smartCAR device.
On the other hand, USB Controller means ALWAYS the controller
providing the USB 2.0 interface of the smartCAR device.

Control Software

3-2 smartCAR – User Manual

The DLL functions for programming using the Windows device driver
are described in the following sections:

♦ Driver_Info
♦ DLL_Info
♦ Write_FIFO
♦ Read_FIFO
♦ Read_FIFO_Timeout
♦ Write_COMMAND
♦ Read_COMMAND

3.2.1 Windows
Device Driver

Control Software

 smartCAR – User Manual 3-3

The GUSB_Platform_Driver_Info function is for the status query of the
hardware driver and for the internal initialization of the required
handles.

Executing this function at least once is obligatory before calling any
other function of the GUSB_Platform driver.

Format:

int GUSB_Platform_Driver_Info(GUSB_Platform_DriverInfo *pDriverInfo,

 unsigned int LengthInByte)

Parameters:

Pointer, for example pDriverInfo
to a data structure
For the structure, see the GUSB_Platform.h file on the delivered CD

LengthInByte
Size of the storage area pDriverInfo is pointing to, in bytes

Description:
The GUSB_Platform_Driver_Info function returns information regarding
the status of the hardware driver.
For this reason, the address of the pDriverInfo pointer has to be
transferred to the function. By means of the LengthInByte parameter
the function checks internally if the user memory is initialized
correctly.
The function fills the structure pDriverInfo is pointing to with
statements regarding the driver version, the number of all involved
USB controllers (supported by this driver) and additional information,
e.g. the serial number(s).

Making the hardware information available
as well as initializing the belonging handles is obligatory for the
further use of the USB hardware.

3.2.1.1 Driver_Info

Control Software

3-4 smartCAR – User Manual

The GUSB_Platform_DLL_Info function is for the version number query
of the DLL.

Format:

int GUSB_Platform_DLL_Info(GUSB_Platform_DLLinfo *DLLinformation)

Parameters

Pointer, for example DLLinformation
to a data structure
For the structure, see the GUSB_Platform.h file on the delivered CD

Description:
The GUSB_Platform_DLL_Info function returns the DLLinfo structure.
The first integer value contains the version number of the
GUSB_Platform.dll.

Example:
Version number 1.23 is returned as 123,
and version number 1.60 as 160.

3.2.1.2 DLL_Info

Control Software

 smartCAR – User Manual 3-5

With the GUSB_Platform_Write_FIFO function a command is sent to the
Controller.

Format:

int GUSB_Platform_Write_FIFO(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pWrite,
 unsigned int DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pWrite
to the write data area

DataLength
Size of the storage area pWrite is pointing to, in bytes
Data is consisting of Command Header and Command Bytes
(currently max. 1024 bytes per command)

Description:
The GUSB_Platform_Write_FIFO function sends a command to the
Controller.
For the general structure, see the General Firmware Notes section of
the GOEPEL Firmware document.

3.2.1.3 Write_FIFO

Control Software

3-6 smartCAR – User Manual

The GUSB_Platform_Read_FIFO function is for reading a response from
the Controller.

Format:

int GUSB_Platform_Read_FIFO(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pRead,
 unsigned int *DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After successful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
(currently max. 1024 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Description:
The GUSB_Platform_Read_FIFO function reads back the oldest
response written by the Controller. In the case no response was
received within the fixed Timeout of 100 ms, the function returns NO
error, but the Number of bytes actually read is 0 !!!

3.2.1.4 Read_FIFO

Control Software

 smartCAR – User Manual 3-7

The GUSB_Platform_Read_FIFO_Timeout function is for reading a
response from the Controller within the Timeout to be given.

Format:

int GUSB_Platform_Read_FIFO_Timeout(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pRead,
 unsigned int *DataLength,
 unsigned int Timeout)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After successful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
(currently max. 1024 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Timeout
To be given in milliseconds (500 as the standard value)

Description:
The GUSB_Platform_Read_FIFO_timeout function reads back the oldest
response written by the Controller. In the case no response was
received within the Timeout to be given, the function returns NO
error, but the Number of bytes actually read is 0 !!!

3.2.1.5 Read_
FIFO_Timeout

Control Software

3-8 smartCAR – User Manual

With the GUSB_Platform_Write_COMMAND a configuration command is
sent to the USB Controller.

Format:

int GUSB_Platform_Write_COMMAND(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_COMMAND_Interface_Buffer *pWrite,
 unsigned int DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pWrite
to the write data area

DataLength
Size of the storage area pWrite is pointing to, in bytes
See also USB Controller Control Commands
(currently max. 64 bytes per command)

Description:
The GUSB_Platform_Write_COMMAND function sends a command to the
USB Controller.
For the general structure, see the USB Controller Control Commands
section.

3.2.1.6 Write_
COMMAND

Control Software

 smartCAR – User Manual 3-9

The GUSB_Platform_Read_COMMAND function is for reading a response
from the USB Controller.

Format:

int GUSB_Platform_Read_COMMAND(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_COMMAND_Interface_Buffer *pRead,
 unsigned int *DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After successful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
See also USB Controller Control Commands
(currently min. 64 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Description:
The GUSB_Platform_Read_COMMAND function reads back the oldest
response written by the USB Controller.
If several responses were provided by the USB Controller, up to two of
these responses are written into the buffer of the USB Controller.
More possibly provided responses get lost!

3.2.1.7 Read_
COMMAND

Control Software

3-10 smartCAR – User Manual

3.3 Programming with LabVIEW

On the delivered CD there is a folder with VIs to call smartCAR
devices under LabVIEW.
The LabVIEW VIs use the functions of the GOEPEL G-API for this.

On the delivered CD there is a folder with VIs to call smartCAR
devices under LabVIEW.
The functions described in the Windows Device Driver section are
used for this.

3.4 Further GOEPEL Software
PROGRESS, Program Generator and myCAR of GOEPEL electronic are
comfortable programs for testing with GOEPEL hardware.
Please refer to the corresponding Software Manuals to get more
information regarding these programs.

3.3.1 LabVIEW
via G-API

3.3.2 LLB using
the Windows
Device Driver

Control Software

 smartCAR – User Manual 3-11

3.5 USB Controller
Control Commands

The USB Controller is responsible for connecting the smartCAR device
to the PC via USB 2.0.
Messages (generally USB commands) required for configuration can
be sent to this USB Controller.

A USB command consists of four bytes Header and the Data (but
Data is NOT required for all USB commands!).
The header of a USB command has the following structure:

Byte number Indication Contents

0 StartByte 0x23 (“#” ASCII character)

1 Command (0x..)
used codes according to USB Commands

2 reserved 0x00

3 reserved 0x00

Same as a USB command, also the USB response consists of four
bytes Header and the Data (but Data is NOT returned by all USB
commands!).
The header of a USB response has the following structure:

Byte number Indication Contents

0 StartByte 0x24
1 Command (0x..)

used codes according to USB Commands

2 Length Length depending on the command

3 ErrorCode Returns the error code of the command

At present there is only the READ_SW_VERSION USB command
available.

Command Indication Description

0x04 READ_SW_VERSION Provides the firmware version of the USB Controller

Response:
Byte 4: low byte of generic software version
Byte 5: high byte of generic software version
Byte 6: low byte of software version of functional part
Byte 7: high byte of software version of functional part

3.5.1 USB
Command
Structure

3.5.2 USB
Response
Structure

3.5.3 USB
Commands

Index

 smartCAR – User Manual i

C

Controller
Command 3-5
Response 3-6, 3-7

G

G-API 3-1

L

LabVIEW
G-API 3-10
Windows 3-10

S

smartCAR
Connectors 2-6
Construction 2-3
Modules 2-7
Ressources 2-1

T

Transceiver
CAN 2-4
Change 2-4
K-Line 2-5
LIN 2-5

U

USB Command structure .. 3-11
USB Commands 3-11
USB Controller

Command 3-8
Control commands 3-11
Response 3-9

USB Response structure ... 3-11

W

Windows device driver 3-2

	1 Installation
	1.1 Hardware Installation
	1.2 Driver Installation

	2 Hardware
	2.1 Definition
	2.2 Technical Specification
	2.2.1 Dimensions
	2.2.2 smartCAR Characteristics

	2.3 Construction
	2.3.1 General
	2.3.2 Addressing
	2.3.3 Change of Transceivers
	2.3.4 Communication Interfaces
	2.3.5 Connector Assignments

	2.4 Delivery Notes

	3 Control Software
	3.1 Programming via G-API
	3.2 Programming via DLL Functions
	3.2.1 Windows Device Driver
	3.2.1.1 Driver_Info
	3.2.1.2 DLL_Info
	3.2.1.3 Write_FIFO
	3.2.1.4 Read_FIFO
	3.2.1.5 Read_ FIFO_Timeout
	3.2.1.6 Write_ COMMAND
	3.2.1.7 Read_ COMMAND

	3.3 Programming with LabVIEW
	3.3.1 LabVIEW via G-API
	3.3.2 LLB using the Windows Device Driver

	3.4 Further GOEPEL Software
	3.5 USB Controller Control Commands
	3.5.1 USB Command Structure
	3.5.2 USB Response Structure
	3.5.3 USB Commands

	Unbenannt

