

Product Specification

smartCAR
USB 2.0 Stand-alone Device for
CAN, LIN or K-LINE Interface

User Manual Version 1.3

GOEPEL electronic GmbH
Goeschwitzer Str. 58/60
D-07745 Jena
Phone: +49-3641-6896-597
Fax: +49-3641-6896-944
E-Mail: ats_support@goepel.com
http://www.goepel.com Get the tota l Coverage!

Issue: December 2011

© 2011 GOEPEL electronic GmbH. All rights reserved.

The software described in this manual as well as the manual itself are supplied under license and
may be used or copied only in accordance with the terms of the license.
The customer may make one copy of the software for safety purposes.

The content of the manual is subject to change without prior notice and is supplied for information
only.
Hardware and software might be modified also without prior notice due to technical progress.

In case of inaccuracies or errors appearing in this manual, GOEPEL electronic GmbH assumes
no liability or responsibility.

Without the prior written permission of GOEPEL electronic GmbH, no part of this documentation
may be transmitted, reproduced or stored in a retrieval system in any form or by any means
as well as translated into other languages (except as permitted by the license).

GOEPEL electronic GmbH is neither liable for direct damages nor consequential damages from
the company’s product applications.

Printed: 05.12.2011

All product and company names appearing in this manual are trade names or registered trade names of their respective owners.

Table of Contents

 smartCAR – User Manual I

1 INSTALLATION .. 1-1

1.1 HARDWARE INSTALLATION ... 1-1
1.2 DRIVER INSTALLATION .. 1-2

2 HARDWARE ... 2-1
2.1 DEFINITION ... 2-1
2.2 TECHNICAL SPECIFICATION .. 2-2

2.2.1 Dimensions .. 2-2
2.2.2 smartCAR Characteristics... 2-2

2.3 CONSTRUCTION .. 2-3
2.3.1 General .. 2-3
2.3.2 Addressing ... 2-3
2.3.3 Change of Transceivers ... 2-4
2.3.4 Communication Interfaces 2-4
2.3.5 Connector Assignments ... 2-6

2.4 DELIVERY NOTES... 2-7
3 CONTROL SOFTWARE .. 3-1

3.1 PROGRAMMING VIA G-API ... 3-1
3.2 PROGRAMMING VIA DLL FUNCTIONS 3-1

3.2.1 Windows Device Driver ... 3-2
3.2.1.1 Driver_Info ... 3-3
3.2.1.2 DLL_Info .. 3-4
3.2.1.3 Write_FIFO ... 3-5
3.2.1.4 Read_FIFO ... 3-6
3.2.1.5 Read_FIFO_Timeout .. 3-7
3.2.1.6 Write_COMMAND .. 3-8
3.2.1.7 Read_COMMAND... 3-9

3.3 PROGRAMMING WITH LABVIEW .. 3-10
3.3.1 LabVIEW via G-API ... 3-10
3.3.2 LLB using the Windows Device Driver 3-10

3.4 FURTHER GOEPEL SOFTWARE ... 3-10
3.5 USB CONTROLLER CONTROL COMMANDS 3-11

3.5.1 USB Command Structure 3-11
3.5.2 USB Response Structure .. 3-11
3.5.3 USB Commands .. 3-11

4 FIRMWARE COMMANDS .. 4-1
4.1 GENERAL FIRMWARE NOTES ... 4-1

4.1.1 Interfaces .. 4-2
4.1.2 Data Types... 4-2
4.1.3 Header .. 4-3
4.1.4 Constants ... 4-4
4.1.5 Command Structure .. 4-4
4.1.6 Response Structure ... 4-4
4.1.7 Command Acknowledgment 4-5
4.1.8 Command Examples ... 4-6
4.1.9 Bootloader ... 4-15
4.1.10 Command Sequence ... 4-15

4.2 GENERAL FIRMWARE COMMANDS ... 4-16
4.2.1 0x03 Enable Functionalities 4-16
4.2.2 0x10 Software Reset ... 4-16
4.2.3 0xF0 Get Firmware Version 4-16

Table of Contents

II smartCAR – User Manual

4.3 CAN COMMANDS .. 4-18
4.3.1 0x12 CAN Init Interface .. 4-19
4.3.2 0x14 CAN Set Bus Baudrate 4-20
4.3.3 0x1E CAN Node .. 4-22

4.3.3.1 SET_FLAG_BY_ID ... 4-23
4.3.3.2 GET_FLAG_BY_ID ... 4-23
4.3.3.3 BAUD_RATE SET ... 4-24
4.3.3.4 BAUD_RATE GET .. 4-25

4.3.4 0x22 CAN Message Definition 4-26
4.3.5 0x23 CAN Change Prepare Mode 4-27
4.3.6 0x24 CAN Change Message Mode 4-27
4.3.7 0x25 CAN Change Message Data 4-28
4.3.8 0x28 CAN Start Prepared Messages 4-28
4.3.9 0x29 CAN Stop Prepared Messages 4-28
4.3.10 0x2A CAN Delete one Message 4-29
4.3.11 0x52 CAN Monitor – Receiving Filter Definition........ 4-29
4.3.12 0x54 CAN Monitor – Activation/ Deactivation 4-30
4.3.13 0x81 CAN TP – Configuration 4-31
4.3.14 0x82 CAN TP – Multi session Channel Request 4-36
4.3.15 0x83 CAN TP – Multi session Channel Release 4-36
4.3.16 0x8A CAN TP – Send Broadcast Data 4-36
4.3.17 0x8B CAN TP – Get Broadcast Data 4-37
4.3.18 0x8C CAN TP – Stop Broadcast Retriggering 4-37
4.3.19 0x8D CAN TP Control .. 4-38
4.3.20 0xA0 CAN Diagnostics – Configuration 4-39
4.3.21 0xA1 CAN Diagnostics – Start Session 4-46
4.3.22 0xA2 CAN Diagnostics – Send Request 4-47
4.3.23 0xA3 CAN Diagnostics – Get Normal Response Buffer

 .. 4-48
4.3.24 0xA4 CAN Diagnostics – Stop Session 4-49
4.3.25 0xA5 CAN Diagnostics – Get State 4-50
4.3.26 0xA6 CAN Diagnostics – Get Asynchronous Response

Buffer ... 4-51
4.3.27 0xA7 CAN Diagnostics – Get UUDT Response Buffer 4-52
4.3.28 0xB0 CAN TX-FIFO – Reset 4-53
4.3.29 0xB1 CAN TX-FIFO – Send one Message 4-53
4.3.30 0xB2 CAN TX-FIFO – Send several Messages 4-54
4.3.31 0xB3 CAN TX-FIFO – Get State 4-54
4.3.32 0xF1 CAN Monitor – Get Buffer Items 4-55
4.3.33 0xF2 CAN Monitor – Get List Item 4-57

4.4 LIN COMMANDS ... 4-58
4.4.1 0x12 LIN Init Interface ... 4-61
4.4.2 0x14 LIN Set Interface Properties 4-62
4.4.3 0x15 LIN Set Checksum Model 4-63
4.4.4 0x22 LIN Fill Schedule Table 4-64
4.4.5 0x23 LIN Fill Frame Response Table 4-65
4.4.6 0x24 LIN Send WakeUp Request 4-65
4.4.7 0x25 LIN Set Slave Task State 4-66
4.4.8 0x28 LIN Master – Start Transmitting 4-66
4.4.9 0x29 LIN Master – Stop Transmitting 4-66
4.4.10 0x2A LIN Clear Schedule Table 4-66
4.4.11 0x2B LIN Remove Frame Response Table Items 4-67
4.4.12 0x30 LIN Frame Response Definition...................... 4-67
4.4.13 0x31 LIN Delete Frame Response 4-68
4.4.14 0x40 LIN Set Bus BaudRate 4-68
4.4.15 0x46 LIN Set Break Detection Threshold 4-68

Table of Contents

 smartCAR – User Manual III

4.4.16 0x47 LIN Set WakeUp DelimiterTime 4-69
4.4.17 0x52 LIN Monitor – Receiving Filter Definition 4-69
4.4.18 0x54 LIN Monitor – Activation/ Deactivation 4-70
4.4.19 0x81 LIN Relays – Setting 4-71
4.4.20 0x82 LIN Relays – Resetting 4-71
4.4.21 0x83 LIN Relays – Direct Setting 4-72
4.4.22 0x84 LIN Relays – Get State 4-72
4.4.23 0xA0 LIN Diagnostics – Configuration 4-73
4.4.24 0xA1 LIN Diagnostics – Start Session 4-77
4.4.25 0xA2 LIN Diagnostics – Send Request 4-77
4.4.26 0xA3 LIN Diagnostics – Get ResponseBuffer 4-78
4.4.27 0xA4 LIN Diagnostics – Stop Session 4-79
4.4.28 0xA5 LIN Diagnostics – Get State 4-80
4.4.29 0xA8 LIN Diagnostics – Change Timing 4-81
4.4.30 0xA9 LIN Diagnostics – Protocol Control 4-82
4.4.31 0xF2 LIN Monitor – Get Small Buffer Items 4-83

4.5 K-LINE COMMANDS .. 4-84
4.5.1 0x12 KLine Init Interface 4-86
4.5.2 0xA0 KLine Diagnostics – Configuration 4-87
4.5.3 0xA1 KLine Diagnostics – Start Session................... 4-96
4.5.4 0xA2 KLine Diagnostics – Send Request 4-98
4.5.5 0xA3 KLine Diagnostics – Get Response Buffer 4-101
4.5.6 0xA4 KLine Diagnostics – Stop Session 4-102
4.5.7 0xA5 KLine Diagnostics – Get State 4-104

Installation

 smartCAR – User Manual 1-1

1 Installation

1.1 Hardware Installation
Generally hardware installation for smartCAR means exchanging the
transceiver modules.

Please make absolutely certain that all of the hardware installation
procedures described below are carried out with your system
switched off.

If it is necessary to exchange transceiver modules, no intervention in
the smartCAR device is required (see Change of Transceivers).
Doing this, pay attention to the general rules to avoid electrostatic
discharging.

Installation

1-2 smartCAR – User Manual

1.2 Driver Installation
For proper installation of the GOEPEL electronic USB drivers on your
system, we recommend to execute the GUSB driver setup.
To do that, start the GUSB-Setup-*.exe setup program (of the
supplied CD, “*” stands for the version number) and follow the
instructions.

Your smartCAR can be operated under Windows® 2000/ XP
as well as under Windows® 7/ 32 Bits and Windows® 7/ 64 Bits.

If you want to create your own software for a smartCAR, you possibly
need additional files for user specific programming (*.LLB, *.H).
These files are not automatically copied to the computer and have to
be transferred individually from the supplied CD to your development
directory.

The USB interface uses the high-speed data rate according to the
USB2.0 specification (if possible, otherwise full-speed).

After driver installation, you can check whether the device is properly
embedded by the system:

Please note that the Device Manager shows ALL USB controllers.

Figure 1-1:
Display of Device Manager

Hardware

 smartCAR – User Manual 2-1

2 Hardware

2.1 Definition
smartCAR is a GOEPEL electronic GmbH stand-alone device with USB 2.0
interface to be connected to a PC or laptop.
It was in particular developed for applications out of complex test
systems (for example in garages).

smartCAR offers the following resources:

♦ 1 x CAN or 1x LIN or 1x K-Line
♦ 32Bit µController onBoard
♦ USB 2.0 Interface
♦ Power supply optionally via the USB interface or externally
♦ High flexibility by exchangeable transceiver modules

Please note that your smartCAR DOES NOT provide electric
isolation between the USB system and the user interface.
Therefore, the UUT and all other devices connected with the
smartCAR have to supplied either by isolated power supply units
or all involved devices have to be connected to the same ground
potential in a star-shaped manner.

Figure 2-1:
smartCAR

Hardware

2-2 smartCAR – User Manual

2.2 Technical Specification

The dimensions of your smartCAR are given in millimeters
(width x height x depth):

♦ 75 mm x 25 mm x 110 mm

The smartCAR characteristics are shown in this table:

Symbol Parameter Min. Typ. Max. Unit Remarks

UBAT Power supply 8 27 V Via USB interface or externally

 Transmission rate 1 MBaud For CAN or

 Transmission rate 22 kBaud For LIN or

 Transmission rate 150 kBaud For K-Line

Rbus Terminating resistor 120 Ohms For CAN or

RPullup Pull-up resistor 1000 Ohms For K-Line

2.2.1 Dimensions

2.2.2 smartCAR
Characteristics

Hardware

 smartCAR – User Manual 2-3

2.3 Construction

Figure 2-2 shows schematically the construction of a smartCAR:

Figure 2-2: Block diagram of a smartCAR device

Please use only the delivered USB cable to connect your smartCAR
device to the PC’s USB interface.
Other cables may be inapplicable.

In case of using several smartCAR devices at the same PC the
individual device is exclusively addressed according to its serial
number (see Control Software):
The device with the LEAST serial number is always the device with
the number 1.

To improve clarity, we recommend to connect the individual
smartCAR devices with the same PC in the order of ascending serial
numbers.

2.3.1 General

2.3.2 Addressing

Hardware

2-4 smartCAR – User Manual

Figure 2-3 demonstrates the mechanical join between smartCAR’s
main module and transceiver module.
To change the transceiver module, separate the assembled one by
top-bottom traction from the main module.

2 x CAN-Interface Version 2.0b:
The type of the mounted transceiver is decisive for proper operation
of a CAN interface in a network. Often CAN networks do only
operate properly in the case that all members use a compatible type
of transceiver.
To offer maximal flexibility to the users of the smartCAR device, the
transceivers are designed as plug-in modules.
There are several types (high speed, low speed, single-wire etc.) that
can be easily exchanged (see Figure 2-3).
Ubat is the internal connection for the power supply of the transceiver
modules.

2.3.3 Change of
Transceivers

Figure 2-3
Change of Transceiver

module

2.3.4 Commu-
nication Interfaces

Figure 2-4:
CAN interface

Hardware

 smartCAR – User Manual 2-5

K-Line Interface (ISO 9141)
The transceiver is designed as a plug-in module.
Generally, the L9637 of ST is used for this type of transceiver.
Ubat is the internal connection for the power supply of the transceiver
module.

LIN-Interface Version 2.0:
The transceiver is designed as a plug-in module.
Generally, the TJA1020 of Philips is used for this type of
transceiver.
It is possible to change over between Master and Slave configuration
per software using the relay with number 2.
Ubat is the internal connection for the power supply of the transceiver
module.

Abbildung 2-5
K-Line interface

Figure 2-6:
LIN interface

Hardware

2-6 smartCAR – User Manual

For the access to the communication interface there is the RJ45 socket
at the front side of your smartCAR device.
You may also use the SubD plug of the delivered cable.

Communication Interface
Type: RJ45 female
The assignments are shown in the following table:

Pin CAN K-Line/ LIN

1 Ubat Ubat

2 n.c. n.c.

3 CAN-High n.c.

4 CAN-Low n.c.

5 n.c. K-Line/ LIN

6 n.c. n.c.

7 n.c. n.c.

8 GND GND

Type: DSub 9 poles male (at the cable)
The assignments are shown in the following table:

Pin CAN K-Line/ LIN

1 n.c. n.c.

2 CAN-Low n.c.

3 GND GND

4 n.c. n.c.

5 n.c. n.c.

6 n.c. n.c.

7 CAN-High K-Line/ LIN

8 n.c. n.c.

9 Ubat Ubat

USB Interface
At smartCAR’s rear side there is the miniUSB-socket (with USB
standard assignment) for the USB 2.0 interface.

2.3.5 Connector
Assignments

Hardware

 smartCAR – User Manual 2-7

2.4 Delivery Notes
A smartCAR delivery includes at least

♦ 1x smartCAR Main module and 1x smartCAR Transceiver module

At present the following types of Transceiver modules are available:

♦ 1x TJA1041 CAN Highspeed
♦ 1x TJA1054 CAN Lowspeed
♦ 1x AU5790 CAN Single Wire
♦ 1x L9637 K-Line
♦ 1x TJA 1020 LIN

When ordering a smartCAR, please give also a note regarding the
type of the required Transceiver module.

Only by exchanging the Transceiver module (see Figure 2-3) you
decide whether the smartCAR hardware interface is working as a
CAN, LIN or K-Line interface.

Control Software

 smartCAR – User Manual 3-1

3 Control Software
There are three ways to integrate the smartCAR hardware in your
own applications:

♦ Programming via G-API
♦ Programming via DLL Functions
♦ Programming with LabVIEW

3.1 Programming via G-API
The G_API (GOEPEL-API) is the favored user interface for this
GOEPEL hardware.
You can find all necessary information in the G-API folder of the
delivered CD.

3.2 Programming via DLL
Functions

Programming via DLL Fuctions is possible also in future for existing
projects which can not be processed with the GOEPEL electronic
programming interface G-API.

The GUSB_Platform expression used in the following function
description stands for one individual smartCAR device.

For the used structures, data types and error codes refer to the
headers – you find the corresponding files on the supplied CD (see
also General Firmware Notes):

In this User Manual, Controller means ALWAYS the micro controller
assigned to the CAN, LIN or K-Line interface of a smartCAR device.
On the other hand, USB Controller means ALWAYS the controller
providing the USB 2.0 interface of the smartCAR device.

Control Software

3-2 smartCAR – User Manual

The DLL functions for programming using the Windows device driver
are described in the following sections:

♦ Driver_Info
♦ DLL_Info
♦ Write_FIFO
♦ Read_FIFO
♦ Read_FIFO_Timeout
♦ Write_COMMAND
♦ Read_COMMAND

3.2.1 Windows
Device Driver

Control Software

 smartCAR – User Manual 3-3

The GUSB_Platform_Driver_Info function is for the status query of the
hardware driver and for the internal initialization of the required
handles.

Executing this function at least once is obligatory before calling any
other function of the GUSB_Platform driver.

Format:

int GUSB_Platform_Driver_Info(GUSB_Platform_DriverInfo *pDriverInfo,

 unsigned int LengthInByte)

Parameters:

Pointer, for example pDriverInfo
to a data structure
For the structure, see the GUSB_Platform.h file on the delivered CD

LengthInByte
Size of the storage area pDriverInfo is pointing to, in bytes

Description:
The GUSB_Platform_Driver_Info function returns information regarding
the status of the hardware driver.
For this reason, the address of the pDriverInfo pointer has to be
transferred to the function. By means of the LengthInByte parameter
the function checks internally if the user memory is initialized
correctly.
The function fills the structure pDriverInfo is pointing to with
statements regarding the driver version, the number of all involved
USB controllers (supported by this driver) and additional information,
e.g. the serial number(s).

Making the hardware information available
as well as initializing the belonging handles is obligatory for the
further use of the USB hardware.

3.2.1.1 Driver_Info

Control Software

3-4 smartCAR – User Manual

The GUSB_Platform_DLL_Info function is for the version number query
of the DLL.

Format:

int GUSB_Platform_DLL_Info(GUSB_Platform_DLLinfo *DLLinformation)

Parameters

Pointer, for example DLLinformation
to a data structure
For the structure, see the GUSB_Platform.h file on the delivered CD

Description:
The GUSB_Platform_DLL_Info function returns the DLLinfo structure.
The first integer value contains the version number of the
GUSB_Platform.dll.

Example:
Version number 1.23 is returned as 123,
and version number 1.60 as 160.

3.2.1.2 DLL_Info

Control Software

 smartCAR – User Manual 3-5

With the GUSB_Platform_Write_FIFO function a command is sent to the
Controller.

Format:

int GUSB_Platform_Write_FIFO(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pWrite,
 unsigned int DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pWrite
to the write data area

DataLength
Size of the storage area pWrite is pointing to, in bytes
Data is consisting of Command Header and Command Bytes
See also Command Structure
(currently max. 1024 bytes per command)

Description:
The GUSB_Platform_Write_FIFO function sends a command to the
Controller.
For the general structure see the General Firmware Notes section.

3.2.1.3 Write_FIFO

Control Software

3-6 smartCAR – User Manual

The GUSB_Platform_Read_FIFO function is for reading a response from
the Controller.

Format:

int GUSB_Platform_Read_FIFO(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pRead,
 unsigned int *DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13).

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After sucessful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
See also Response Structure
(currently max. 1024 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Description:
The GUSB_Platform_Read_FIFO function reads back the oldest
response written by the Controller. In the case no response was
received within the fixed Timeout of 100 ms, the function returns NO
error, but the Number of bytes actually read is 0 !!!

3.2.1.4 Read_FIFO

Control Software

 smartCAR – User Manual 3-7

The GUSB_Platform_Read_FIFO_Timeout function is for reading a
response from the Controller within the Timeout to be given.

Format:

int GUSB_Platform_Read_FIFO_Timeout(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pRead,
 unsigned int *DataLength,
 unsigned int Timeout)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13).

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After successful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
See also Response Structure
(currently max. 1024 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Timeout
To be given in milliseconds (500 as the standard value)

Description:
The GUSB_Platform_Read_FIFO_timeout function reads back the oldest
response written by the Controller. In the case no response was
received within the Timeout to be given, the function returns NO
error, but the Number of bytes actually read is 0 !!!

3.2.1.5 Read_
FIFO_Timeout

Control Software

3-8 smartCAR – User Manual

With the GUSB_Platform_Write_COMMAND a configuration command is
sent to the USB Controller.

Format:

int GUSB_Platform_Write_COMMAND(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_COMMAND_Interface_Buffer *pWrite,
 unsigned int DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13).

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pWrite
to the write data area
See also USB Controller Control Commands
(currently max. 64 bytes per command)

DataLength
Size of the storage area pWrite is pointing to, in bytes

Description:
The GUSB_Platform_Write_COMMAND function sends a command to the
USB Controller.
For the general structure, see the USB Controller Control Commands
section.

3.2.1.6 Write_
COMMAND

Control Software

 smartCAR – User Manual 3-9

The GUSB_Platform_Read_COMMAND function is for reading a response
from the USB Controller.

Format:

int GUSB_Platform_Read_COMMAND(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_COMMAND_Interface_Buffer *pRead,
 unsigned int *DataLength)

Parameters:

DeviceName
Type of the addressed device
(number declared in GUSB_Platform_def.h, for smartCAR = 13).

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After sucessful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
See also USB Controller Control Commands
(currently min. 64 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Description:
The GUSB_Platform_Read_COMMAND function reads back the oldest
response written by the USB Controller.
If several responses were provided by the USB Controller, up to two of
these responses are written into the buffer of the USB Controller.
More possibly provided responses get lost!

3.2.1.7 Read_
COMMAND

Control Software

3-10 smartCAR – User Manual

3.3 Programming with LabVIEW

On the delivered CD there is a folder with VIs to call smartCAR
devices under LabVIEW.
The LabVIEW VIs use the functions of the GOEPEL G-API for this.

On the delivered CD there is a folder with VIs to call smartCAR
devices under LabVIEW.
The functions described in the Windows Device Driver section are
used for this.

3.4 Further GOEPEL Software
PROGRESS, Program Generator and myCAR of GOEPEL electronic are
comfortable programs for testing with GOEPEL hardware.
Please refer to the corresponding Software Manuals to get more
information regarding these programs.

3.3.1 LabVIEW
via G-API

3.3.2 LLB using
the Windows
Device Driver

Control Software

 smartCAR – User Manual 3-11

3.5 USB Controller
Control Commands

The USB Controller is responsible for connecting the smartCAR device
to the PC via USB 2.0.
Messages (generally USB commands) required for configuration can
be sent to this USB Controller.

A USB command consists of four bytes Header and the Data (but
Data is NOT required for all USB commands!).
The header of a USB command has the following structure:

Byte number Indication Contents

0 StartByte 0x23 (“#” ASCII character)

1 Command (0x..)
used codes according to USB Commands

2 reserved 0x00

3 reserved 0x00

Same as a USB command, also the USB response consists of four
bytes Header and the Data (but Data is NOT returned by all USB
commands!).
The header of a USB response has the following structure:

Byte number Indication Contents

0 StartByte 0x24
1 Command (0x..)

used codes according to USB Commands

2 Length Length depending on the command

3 ErrorCode Returns the error code of the command

At present there is only the READ_SW_VERSION USB command
available.

Command Indication Description

0x04 READ_SW_VERSION Provides the firmware version of the USB Controller

Response:
Byte 4: low byte of generic software version
Byte 5: high byte of generic software version
Byte 6: low byte of software version of functional part
Byte 7: high byte of software version of functional part

3.5.1 USB
Command
Structure

3.5.2 USB
Response
Structure

3.5.3 USB
Commands

Firmware Commands

 smartCAR – User Manual 4-1

4 Firmware Commands

4.1 General Firmware Notes
Things in common for all firmware commands on the micro controller
of a smartCAR device are described in this chapter (see also
Interfaces).

The explicit use of the firmware commands for your smartCAR
hardware is only necessary if you want to work with your own
applications without the GOEPEL electronic Programm Generator,
PROGRESS or myCAR programs or the use of the G-API is not
possible.

After the subsections

♦ Interfaces (see Interfaces)
♦ Data types (see Data Types)
♦ Header (see Header)
♦ Constants (see Constants)
♦ Command Structure (see Command Structure)
♦ Response Structure (see Response Structure)
♦ Command Acknowledgment (see Command Acknowledgment)
♦ Command Examples (see Command Examples)
♦ Bootloader (see Bootloader)
♦ Command Sequence (see Command Sequence)

there is the actual command description in the subsections

♦ General Firmware Commands (see General Firmware Commands)
♦ CAN Commands (see CAN Commands)
♦ LIN Commands (see LIN Commands)
♦ K-Line Commands (see K-Line Commands)

Please ensure to transfer always the value 0 for all command bytes
and bits indicated reserved in the command descriptions.
In the case more command bytes as described are transferred, also
these bytes must be filled with 0!

The firmware commands
 0x03 Enable Functionalities
 0x10 Software Reset
 0xF0 Get Firmware Version
refer to the microcontroller of a smartCAR device
(irrespective of the current Software Interface, see Interfaces).

Firmware Commands

4-2 smartCAR – User Manual

Take the assignment of the Software interface to the corresponding
Interface number for the Controller of a smartCAR device from this
table:

Software
Interface

Interface
Number

Controller
Number

CAN 1 1

LIN 4 1

K-Line 6 1

All firmware commands for a smartCAR device are operated by the
same micro controller.

As a rule data is handled as 8, 16 or 32 bit integer in the Intel format
(little endian). That means low byte first and then high byte(s), see
example for a 32 bits integer value:
Example: Identifier 0x00A534FE (4 bytes)

Bytearray[x] 0xFE

Bytearray[x+1] 0x34

Bytearray[x+2] 0xA5

Bytearray[x+3] 0x00

Handling of floating point values is carried out in the
little endian IEEE-754 32 bit single precision format for float
and in the
little endian IEEE-754 64 bit double precision format for double.

Here are further examples for different data types:

Type of Data Value Bytes Byte Offset

16 bits integer (short) 0x1234 0x34
0x12

0 (Low Byte)
1 (High Byte)

32 bits integer (long) 0x12345678 0x78
0x56
0x34
0x12

0 (Low Byte)
1
2
3 (High Byte)

32 bits floating point (float) 123.456 0x79
0xE9
0xF6
0x42

0 (Low Byte)
1
2
3 (High Byte)

64 bits floating point
(double)

123.456 0x77
0xBE
0x9F
0x1A
0x2F
0xDD
0x5E
0x40

0 (Low Byte)
1
2
3
4
5
6
7 (High Byte)

4.1.1 Interfaces

4.1.2 Data Types

Firmware Commands

 smartCAR – User Manual 4-3

The following header is used for the complete data exchange:

Byte
number

Indication Description

0 StartByte 0x23 (“#” ASCII character)

1 Flags Bit 0 = 1: Always command acknowledgment
Bit 1 = 1: Command acknowledgment only in case of errors
Bits 2..7: Reserved
 Therefore the following results for the byte value:
 0: No command acknowledgment
 1: Always command acknowledgment
 2: Command acknowledgment only in case of errors

2, 3 Length 12..1024
Complete length of the command (Header + Parameters)

4 TargetAddress Address of the controller (1, command)
or address of the host application (0, response)

5 TargetPort Interface of the controller (1, 4 or 6, command)
or port address of the host application (0, response)

6 SourceAddress Address of the host application (0, command)
or address of the controller (1, Response)

7 SourcePort Port address of the host application (0, command)
or interface of the controller (1, 4 or 6, response)

8 Type 0: Command
1: Response
2: Command acknowledgment

9 ApplicationHandle The content of ApplicationHandle is sent back to the host unchanged
by the controller in the case of responses

10 reserved Reserved

11 Command Command code (0x00..)
Used codes according to firmware, see General Firmware
Commands, CAN Commands, LIN Commands and K-Line
Commands

The controlling of further smartCAR devices is carried out via the
DeviceNumber in the GUSB_Platform driver.

If possible use always command acknowledgment (Flags/ bit 0 = 1
or bit 1 = 1) to get a feedback from the hardware after command
execution.

The address of the host application (SourceAddress for commands,
TargetAddress for responses) should be always 0.
In this case the port of the host application (SourcePort for
commands, TargetPort for responses) can be allocated freely
(generally 0).

4.1.3 Header

Firmware Commands

4-4 smartCAR – User Manual

The maximum quantity of Command bytes results from the following
equotation:
PARAM_SIZE = MESSAGE_SIZE – HEADER_SIZE

Symbolic
constant

Value for
smartCAR

Remarks

MESSAGE_SIZE 1024 Maximum size of the
command or response

including Header in bytes

HEADER_SIZE 12 Size of the Header in bytes

PARAM_SIZE 1012 Maximum size of the
parameters (Command bytes
or Response bytes) in bytes

A command consists of Command header and Command bytes (but not
all commands require Command bytes).
The Command header consists of the Header with Type = 0 (see
Header) and the corresponding command code Command.
In this documentation, look for the Command at the beginning of
each heading of the command descriptions.
The Command bytes are limited regarding their quantity by the
maximum size of the command (MESSAGE_SIZE) and the size of the
command header (HEADER_SIZE). The maximum quantity of Command
bytes corresponds to the value of PARAM_SIZE (see Constants).

A response is built up of Response header and Response bytes.
The Response header consists of the Header with Type = 1 (see
Header) and the command code Command according to the
corresponding executed command.
The Response bytes are limited regarding their quantity by the
maximum size of the command (MESSAGE_SIZE) and the size of the
response header (HEADER_SIZE). The maximum quantity of Response
bytes corresponds to the value of PARAM_SIZE (see Constants).

The values for TargetAddress, TargetPort, SourceAddress as well as
SourcePort are exchanged as a result of the direction change
(command/ response).

In the case of firmware commands with a response, this response is
described following the description of the corresponding command.
Commands without this response description DO NOT create a
response.

4.1.4 Constants

4.1.5 Command
Structure

4.1.6 Response
Structure

Firmware Commands

 smartCAR – User Manual 4-5

A command is acknowledged by a special response (the command
acknowledgment response) to the host after its execution in the
controller in case Bit 0 of Flags in the header is set to 1.
This response consists of the Header and Response bytes.
To be able to distinguish command acknowledgment responses from
normal responses, Type = 2 is set.

Response:
Byte Indication Description

0..3 ErrorNumber 0: No error
Otherwise: Error

4..
(3+N)

ErrorDescription Zero terminated error string of N length
(including terminating “Zero” character)
1 ≤ N ≤ (PARAM_SIZE – 4) (PARAM_SIZE see Constants)

In the case of commands with a response (e.g. 0xF0 Get Firmware
Version), the controller sends the actual response first (if Bit 0 in Flags
of the 12 byte header is set) and then the command acknowledgment
response to the host. If several parameters of the command are
invalid in this case, the controller sends only the command
acknowledgment response (with error number and error description
set accordingly). Therefore Type evaluation is absolutely necessary
for 12 byte headers.

For working more efficiently with commands creating a response, set
Bit 1 in Flags of the 12 byte header instead of Bit 0.
This way always only one response is sent by the controller:
The desired one if the command ran without error, or the command
acknowledge response in the case of errors.

4.1.7 Command
Acknowledgment

Firmware Commands

4-6 smartCAR – User Manual

Example 1: CAN Command + Command Acknowledgment

The following example shows the individual bytes including the header
of the 0x22 CAN Message Definition Command and the
corresponding Command Acknowledgment.
The Command is written to the interface 1 (CAN) of the Controller of
the third smartCAR device (by function call GUSB_Platform_Write_FIFO,
see Control Software).
Then the Command Acknowledgment is read from the same controller
of the same device.

Command (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x01 Flags Bit 0 = 1: Command acknowledgment (always) active

2 0x20 Length Total length of the command = 12+20 = 32, LowByte

3 0x00 Total length of the command = 12+20 = 32, HighByte

4 0x01 TargetAddress Address of the controller = 1 (see also Notes, following page)

5 0x01 TargetPort Interface on the controller = 1

6 0x00 SourceAddress Address of the host application = 0

7 0x00 SourcePort Port address of the host application = 0

8 0x00 Type 0: Command

9 0x00 ApplicationHandle Freely selectable, is returned unchanged in the Command
Acknowledgment

10 0x00 reserved Reserved, to be assigned by 0

11 0x22 Command Command code for 0x22 CAN Message Definition

12 0x23 Id Identifier (0x123), LowByte

13 0x01 Identifier (0x123), MidByte1

14 0x00 Identifier (0x123), MidByte2

15 0x00 Identifier (0x123), HighByte

16 0xE8 CycleTime Cycle time (1000) in milliseconds, LowByte

17 0x03 Cycle time (1000) in milliseconds, HighByte

18 0x01 Mode 1: CAN Output message

19 0x00 PrepareMode 0: CAN No preparing of the message

20 0x03 MessageCount Output the message 3 times

21 0x06 Dlc Data length = 6

22 0x11 Data Data byte 0 = 0x11

23 0x22 Data byte 1 = 0x22

24 0x33 Data byte 2 = 0x33

25 0x44 Data byte 3 = 0x44

26 0x55 Data byte 4 = 0x55

27 0x66 Data byte 5 = 0x66

28 0x77 Data byte 6 = 0x77 (value is irrelevant, as Dlc = 6)

29 0x88 Data byte 7 = 0x88 (value is irrelevant, as Dlc = 6)

30 0x00 reserved Reserved, to be assigned by 0

31 0x00 Reserved, to be assigned by 0

4.1.8 Command
Examples

Firmware Commands

 smartCAR – User Manual 4-7

Notes:
For USB addressing the Device via the Header of the corresponding
Firmware command is INSUFFICIENT. Additionally the DeviceNumber
for the GUSB_Platform driver must be adapted (see Programming via
DLL Functions in the Control Software section).
This DeviceNumber complies with the serial number of the
corresponding device in ascending order.

For this example, Interface 1 (CAN) of the third smartCAR device is
addressed by TargetPort 1 in the Header and DeviceNumber 3 in
the GUSB_Platform driver.
The required function is:
GUSB_Platform_Write_FIFO(13, // DeviceName
 3, // DeviceNumber
 pWrite, // pWrite
 32); // DataLength

Here, pWrite is the pointer to the area including the bytes according to
Byte Index 0 .. 31 of the Command (including Header) (previous page).

Command Acknowledgment (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x00 Flags No flags set

2 0x11 Length Total length of the response = 12+5 = 17, LowByte

3 0x00 Total length of the response = 12+5 = 17, HighByte

4 0x00 TargetAddress Address of the host application = 0

5 0x00 TargetPort Port address of the host application = 0

6 0x01 SourceAddress Address of the controller = 1

7 0x01 SourcePort Interface on the controller = 1

8 0x02 Type 2: Command acknowledgment

9 0x00 ApplicationHandle The content is sent back unchanged

10 0x00 reserved Reserved

11 0x22 Command Command code for 0x22 CAN Message Definition

12 0x00 ErrorNumber Error number (0: no error), LowByte

13 0x00 Error number (0: no error), MidByte1

14 0x00 Error number (0: no error), MidByte2

15 0x00 Error number (0: no error), HighByte

16 0x00 ErrorDescription Empty string (only the terminating “zero”)

Firmware Commands

4-8 smartCAR – User Manual

Example 2: CAN Command + Response

The following example shows the individual bytes including the header
of the 0xF2 CAN Monitor – Get List Item Command and the
corresponding Response.
The Command is written to the interface 1 (CAN) of the Controller of
the smartCAR device (by function call GUSB_Platform_Write_FIFO, see
Control Software). Then the Response is read from the same
controller of the same device.

Command (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x02 Flags Bit 1 = 1: Command acknowledgment only in the case of
errors

2 0x0C Length Total length of the command = 12 (only header), LowByte

3 0x00 Total length of the command = 12 (only header), HighByte

4 0x01 TargetAddress Address of the controller = 1 (see also Notes to Example 1)

5 0x01 TargetPort Interface on the controller = 1

6 0x00 SourceAddress Address of the host application = 0

7 0x00 SourcePort Port address of the host application = 0

8 0x00 Type 0: Command

9 0x00 ApplicationHandle Freely selectable, is returned unchanged in the Response

10 0x00 reserved Reserved, to be assigned by 0

11 0xF2 Command Command code for 0xF2 CAN Monitor – Get List Item

12 0x23 Id Identifier (0x123), LowByte

13 0x01 Identifier (0x123), MidByte1

14 0x00 Identifier (0x123), MidByte2

15 0x00 Identifier (0x123), HighByte

Firmware Commands

 smartCAR – User Manual 4-9

Response (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x00 Flags No flags set

2 0x24 Length Total length of the response = 12+24 = 36, LowByte

3 0x00 Total length of the response = 12+24 = 36, HighByte

4 0x00 TargetAddress Address of the host application = 0

5 0x00 TargetPort Port address of the host application = 0

6 0x01 SourceAddress Address of the controller = 1

7 0x01 SourcePort Interface on the controller = 1

8 0x01 Type 1: Response

9 0x00 ApplicationHandle The content is sent back unchanged

10 0x00 reserved Reserved

11 0xF2 Command Command code for 0xF2 CAN Monitor – Get List Item

12 0x23 Id Identifier (0x123), LowByte

13 0x01 Identifier (0x123), MidByte1

14 0x00 Identifier (0x123), MidByte2

15 0x00 Identifier (0x123), HighByte

16 0x78 TimeStamp Time stamp (0x1235678), LowByte

17 0x56 Time stamp (0x1235678), MidByte1

18 0x34 Time stamp (0x1235678), MidByte2

19 0x12 Time stamp (0x1235678), HighByte

20 0xE8 MessageCount Number of transmissions (1000), LowByte

21 0x03 Number of transmissions (1000), MidByte1

22 0x00 Number of transmissions (1000), MidByte2

23 0x00 Number of transmissions (1000), HighByte

24 0x02 Flags Bit 1 = 1: sent CAN message (TX)

25 0x07 Dlc Data length = 7

26 0x01 TimeStampResolution Time stamp resolution is 400 nanoseconds

27 0x00 reserved Reserved

28 0x11 Data Data byte 0 = 0x11

29 0x22 Data byte 1 = 0x22

30 0x33 Data byte 2 = 0x33

31 0x44 Data byte 3 = 0x44

32 0x55 Data byte 4 = 0x55

33 0x66 Data byte 5 = 0x66

34 0x77 Data byte 6 = 0x77

35 0x88 Data byte 7 = 0x88 (value is irrelevant, as Dlc = 7)

Firmware Commands

4-10 smartCAR – User Manual

Example 3: LIN Command + Command Acknowledgment

The following example shows the individual bytes including the header
of the 0x30 LIN Frame Response Definition Command and the
corresponding Command Acknowledgment.
The Command is written to the interface 4 (LIN) of the Controller of
the smartCAR device (by function call GUSB_Platform_Write_FIFO, see
Control Software). Then the Command Acknowledgment is read from
the same controller of the same device.

Command (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x01 Flags Bit 0 = 1: Command acknowledgment (always) active

2 0x1C Length Total length of the command = 12+16 = 28, LowByte

3 0x00 Total length of the command = 12+16 = 28, HighByte

4 0x01 TargetAddress Address of the controller = 1 (see also Notes to Example 1)

5 0x04 TargetPort Interface on the controller = 4

6 0x00 SourceAddress Address of the host application = 0

7 0x00 SourcePort Port address of the host application = 0

8 0x00 Type 0: Command

9 0x00 ApplicationHandle Freely selectable, is returned unchanged in the Command
Acknowledgment

10 0x00 reserved Reserved, to be assigned by 0

11 0x30 Command Command code for 0x30 LIN Frame Response Definition

12 0x12 Id Identifier = 0x12

13 0x01 Mode 1: LIN Output LIN frame response

14 0x00 PrepareMode 0: LIN No preparing of the LIN frame response

15 0x03 MessageCount Output of LIN frame response 3 times

16 0x06 Dlc Data length = 6

17 0x00 reserved Reserved, to be assigned by 0

18 0x00 Reserved, to be assigned by 0

19 0x00 Reserved, to be assigned by 0

20 0x11 Data Data byte 0 = 0x11

21 0x22 Data byte 1 = 0x22

22 0x33 Data byte 2 = 0x33

23 0x44 Data byte 3 = 0x44

24 0x55 Data byte 4 = 0x55

25 0x66 Data byte 5 = 0x66

26 0x77 Data byte 6 = 0x77 (value is irrelevant, as Dlc = 6)

27 0x88 Data byte 7 = 0x88 (value is irrelevant, as Dlc = 6)

Firmware Commands

 smartCAR – User Manual 4-11

Command Acknowledgment (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x00 Flags No flags set

2 0x11 Length Total length of the response = 12+5 = 17, LowByte

3 0x00 Total length of the response = 12+5 = 17, HighByte

4 0x00 TargetAddress Address of the host application = 0

5 0x00 TargetPort Port address of the host application = 0

6 0x01 SourceAddress Address of the controller = 1

7 0x04 SourcePort Interfrace on the controller = 4

8 0x02 Type 2: Command Acknowledgment

9 0x00 ApplicationHandle The content is sent back unchanged

10 0x00 reserved Reserved

11 0x30 Command Command code for 0x30 LIN Frame Response Definition

12 0x00 ErrorNumber Error number (0: no error), LowByte

13 0x00 Error number (0: no error), MidByte1

14 0x00 Error number (0: no error), MidByte2

15 0x00 Error number (0: no error), HighByte

16 0x00 ErrorDescription Empty string (only the terminating “zero”)

Firmware Commands

4-12 smartCAR – User Manual

Example 4: LIN Command + Response

The following example shows the individual bytes including the header
of the 0xF2 LIN Monitor – Get Small Buffer Items Command and the
corresponding Response.
The Command is written to the interface 4 (LIN) of the Controller of
the smartCAR device (by function call GUSB_Platform_Write_FIFO, see
Control Software). Then the Response is read from the same
controller of the same device.

Command (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x02 Flags Bit 1 = 1: Command acknowledgment only in the case of
errors

2 0x0C Length Total length of the command = 12, LowByte

3 0x00 Total length of the command = 12, HighByte

4 0x01 TargetAddress Address of the controller = 1 (see also Notes to Example 1)

5 0x04 TargetPort Interface on the controller = 4

6 0x00 SourceAddress Address of the host application = 0

7 0x00 SourcePort Port address of the host application = 0

8 0x00 Type 0: Command

9 0x00 ApplicationHandle Freely selectable, is returned unchanged in the Response

10 0x00 reserved Reserved, to be assigned by 0

11 0xF2 Command Command code for 0xF2 LIN Monitor – Get Small Buffer Items

Firmware Commands

 smartCAR – User Manual 4-13

Response (including header):

Byte
Index

Byte
Value

Indication Description

0 0x23 StartByte 0x23 (“#” ASCII character)

1 0x00 Flags No flags set

2 0x38 Length Total length of the response = 12+4 + (2 * 20) = 56, LowByte

3 0x00 Total length of the response = 12+4 + (2 * 20) = 56, HighByte

4 0x00 TargetAddress Address of the host application = 0

5 0x00 TargetPort Port address of the host application = 0

6 0x01 SourceAddress Address of the controller = 1

7 0x04 SourcePort Interface on the controller = 4

8 0x01 Type 1: Respose

9 0x00 ApplicationHandle The content is sent back unchanged

10 0x00 reserved Reserved

11 0xF2 Command Command code for 0xF2 LIN Monitor – Get Small Buffer Items

12 0x02 NumberOfItems Number of monitor buffer entries (2), LowByte

13 0x00 Number of monitor buffer entries (2), MidByte1

14 0x00 Number of monitor buffer entries (2), MidByte2

15 0x00 Number of monitor buffer entries (2), HighByte

16 0x42 Flags First monitor entry: Bit 1 and Bit 6 are set: Sent LIN frame
response (TX) with checksum error

17 0x07 Length First monitor entry: Data length including checksum = 7,
i.e. 6 data bytes + 1 checksum byte
(the remaining bytes are indefinite)

18 0x92 IdCode First monitor entry: Identifier byte = 0x92
(Identifier 0x12 + parity bit)

19 0x11 Data First monitor entry: Byte 0 = 0x11 = Data byte 0

20 0x22 First monitor entry: Byte 1 = 0x22 = Data byte 1

21 0x33 First monitor entry: Byte 2 = 0x33 = Data byte 2

22 0x44 First monitor entry: Byte 3 = 0x44 = Data byte 3

23 0x55 First monitor entry: Byte 4 = 0x55 = Data byte 4

24 0x66 First monitor entry: Byte 5 = 0x66 = Data byte 5

25 0x77 First monitor entry: Byte 6 = 0x77 = Checksum

26 0x88 First monitor entry: Byte 7 = 0x88
(value is indefinite, as Length = 7)

27 0x99 First monitor entry: Byte 8 = 0x99
(value is indefinite, as Length = 7)

28 0x78 StartTime First monitor entry: Start time stamp (0x1235678), LowByte

29 0x56 First monitor entry: Start time stamp (0x1235678), MidByte1

30 0x34 First monitor entry: Start time stamp (0x1235678), MidByte2

31 0x12 First monitor entry: Start time stamp (0x1235678), HighByte

32 0x1B BitTimeX8 First monitor entry: eight bit times
(16667 corresponds to 416.675 µs ≈ 8/ 19200 Hz), LowByte

33 0x41 First monitor entry: eight bit times
(16667 corresponds to 416.675 µs ≈ 8/ 19200 Hz), MidByte1

34 0x00 First monitor entry: eight bit times
(16667 corresponds to 416.675 µs ≈ 8/ 19200 Hz), MidByte2

Firmware Commands

4-14 smartCAR – User Manual

35 0x00 First monitor entry: eight bit times
(16667 corresponds to 416.675 µs ≈ 8/ 19200 Hz), HighByte

36 0x00 Flags Second monitor entry: no bits set: received LIN frame
response (RX) without error

37 0x09 Length Second monitor entry: Data length including checksum = 9,
i.e. 8 Data bytes + 1 Checksum byte

38 0xA3 IdCode Second monitor entry: Identifier byte = 0xA3
(Identifier 0x23 + Parity bit)

39 0x11 Data Second monitor entry: Byte 0 = 0x11 = Data byte 0

40 0x22 Second monitor entry: Byte 1 = 0x22 = Data byte 1

41 0x33 Second monitor entry: Byte 2 = 0x33 = Data byte 2

42 0x44 Second monitor entry: Byte 3 = 0x44 = Data byte 3

43 0x55 Second monitor entry: Byte 4 = 0x55 = Data byte 4

44 0x66 Second monitor entry: Byte 5 = 0x66 = Data byte 5

45 0x77 Second monitor entry: Byte 6 = 0x77 = Data byte 6

46 0x88 Second monitor entry: Byte 7 = 0x88 = Data byte 7

47 0x99 Second monitor entry: Byte 8 = 0x99 = Checksum

48 0x01 StartTime Second monitor entry: Start time stamp (0xABCDEF01),
LowByte

49 0xEF Second monitor entry: Start time stamp (0xABCDEF01),
MidByte1

50 0xCD Second monitor entry: Startzeitstempel (0xABCDEF01),
MidByte2

51 0xAB Second monitor entry: Start time stamp (0xABCDEF01),
HighByte

52 0x1A BitTimeX8 Second monitor entry: eight bit times
(16666 corresponds to 416.65 µs ≈ 8/ 19200 Hz), LowByte

53 0x41 Second monitor entry: eight bit times
(16666 corresponds to 416.65 µs ≈ 8/ 19200 Hz), MidByte1

54 0x00 Second monitor entry: eight bit times
(16666 corresponds to 416.65 µs ≈ 8/ 19200 Hz), MidByte2

55 0x00 Second monitor entry: eight bit times
(16666 corresponds to 416.65 µs ≈ 8/ 19200 Hz), HighByte

Firmware Commands

 smartCAR – User Manual 4-15

The smartCAR Controller has a Bootloader for firmware updates and
downloading volatile programs to the RAM.
Just after switching on power supply, the Controller is in the
Bootloader mode.
In order to change over from the Bootloader mode to the
normal operating mode, the 0x10 Software Reset command
must be sent to the Controller.

After switching on, comply the following command sequence:

♦ 0x10 Software Reset firmware command
♦ 0x03 Enable Functionalities firmware command

4.1.9 Bootloader

4.1.10 Command
Sequence

Firmware Commands

4-16 smartCAR – User Manual

4.2 General Firmware Commands

This command enables (if available or possible) the following firmware
elements for the selected controller:

♦ Functionalities

Controller selection is made by the TargetAddress parameter in the
header of the command.
Find out the enabled firmware elements by the 0xF0 Get Firmware
Version command.
This command does not have any command bytes.

This command resets the selected controller to the initial state.
A software reset is executed for the microcontroller.
Controller selection is made by the TargetAddress parameter in the
header of the command.
The command does not have any command bytes.

This command is to query the firmware version of the selected
controller.
Controller selection is made by the TargetAddress parameter in the
header of the command.
The command does not have any command bytes.

Response:
Byte Indication Description

0.. Version Firmware version as 0-terminated string

In the response string there are the following pieces of information:

♦ Firmware version (version)
♦ Creation date (date)
♦ Creation time (time)
♦ Enabled Functionalities (code)

enabled by the 0x03 Enable Functionalities command

4.2.1 0x03
Enable

Functionalities

4.2.2 0x10
Software Reset

4.2.3 0xF0 Get
Firmware Version

Firmware Commands

 smartCAR – User Manual 4-17

Code for possible CAN Functionalities:

code: 00000001-00000001-00000000-00000000 --> Diagnostics KWP2000 on TP1.6

code: 00000002-00000002-00000000-00000000 --> Diagnostics KWP2000 on TP2.0

code: 00000004-00000004-00000000-00000000 --> Diagnostics KWP2000 on ISOTP

code: 00000008-00000008-00000000-00000000 --> Diagnostics for GMLAN

code: 00000004-00000010-00000000-00000000 --> Diagnostics UDS on ISOTP

code: 00000010-00000020-00000000-00000000 --> Diagnostics J1939 on J1939 TP

In this representation the code bits for the Diagnostics and the
corresponding Transport protocol are concatenated.

Code for possible K-Line Functionalities:

code: 00000000-00010000-00000000-00000000 --> Diagnostics KWP2000

code: 00000000-00020000-00000000-00000000 --> Diagnostics KWP1281

code: 00000000-00040000-00000000-00000000 --> Diagnostics ISO-9141-Ford

In the case of several enabled Functionalities, the resulting code is
created by a bit oriented OR concatenation of the individual codes.

Firmware Commands

4-18 smartCAR – User Manual

4.3 CAN Commands
The CAN commands for your GOEPEL hardware are described in this
chapter.

For general information valid for all firmware commands refer to the
General Firmware Notes section in this User Manual.

Optional Functionalities
For each CAN interface there are at most the following Optional
Functionalities:

♦ Transport protocol CAN VWTP1.6
♦ Transport protocol CAN VWTP2.0
♦ Transport protocol CAN ISOTP
♦ Transport protocol GMLAN
♦ Transport protocol J1939
♦ Diagnostics KWP2000 on TP1.6
♦ Diagnostics KWP2000 on TP2.0
♦ Diagnostics KWP2000 on ISOTP
♦ Diagnostics GMLAN
♦ Diagnostics UDS on ISOTP
♦ Diagnostics J1939

After a power-on or software reset, available Optional Functionalities
have to be enabled by 0x03 Enable Functionalities.

Then the following firmware commands should be executed in that
order:

♦ 0x12 CAN Init Interface
♦ 0x1E CAN Node/ BAUD_RATE SET

Initial state:
After a power-on or software reset, the Baudrate of the CAN
interfaces is 500 kBaud. If required, the Baudrate can be set to
another value by 0x1E CAN Node/ BAUD_RATE SET.

The CAN interfaces are initialized for transferring 11 bit identifiers.
Selection between 11 bit and 29 bit identifiers is made by the 0x12
CAN Init Interface command.

Firmware Commands

 smartCAR – User Manual 4-19

This command resets the selected CAN interface without software
reset to the initial state. Additionally, further configuration possibilities
are offered.
Interface selection is made by the TargetAddress and TargetPort
parameters in the header of the command.
The command bytes are optional. If there are no command bytes, the
firmware runs with 0 for the optional command bytes.

Command:
Byte Indication Description

0 reserved Reserved

1 IdMode 0: 11 bit identifiers (default)
1: 29 bit identifiers
2: 11 bit identifiers AND 29 bit identifiers
(29 bit identifiers are marked by additional setting the most high bit
(0x80000000) in the corresponding parameter Id)

2 CANAnalyzerMode 0: Normal Mode (default)
1: Analyzer Mode (no transmitting possible)

3 BlinkMode 0: Flickering of the LEDs deactivated (default)
1: Flickering of the LEDs activated

4 DisableNoAckPauses 0: Compliance of intermissions (100 ms) if no CAN Acknowledge is
received (default)
1: No intermission if no CAN Acknowledge is received

5..7 reserved Reserved

The DisableNoAckPauses parameter is used to deactivate the
compliance of intermissions if no dominant bit is received in the
acknowledge slot of the sent CAN frames.
With DisableNoAckPauses = 0 an intermission of 100 ms is kept after
sending a CAN frame with not received acknowledge for 100 ms
uninterruptedly. Sending/ waiting phases result this way.
With DisableNoAckPauses = 1 the intermissions (waiting phases) are
suppressed: A CAN frame is sent as long as an acknowledge bit
(dominant bit in the acknowledge slot) is received for this CAN frame.

4.3.1 0x12 CAN
Init Interface

Firmware Commands

4-20 smartCAR – User Manual

The CAN bus baudrate can be changed at any time.
Setting of the baudrate is useful or necessary just after the
0x10 Software Reset or 0x12 CAN Init Interface commands.

Please refer also to section 0x1E CAN Node regarding setting the
Baudrate.

Command:
Byte Indication Description

0, 1 Baudrate Baudrate register value

2 TransceiverType Type of transceiver module:
0: High Speed
1: Low Speed
2: Single Wire
3: Highlevel Lowspeed (Truck and Trailer)

3 reserved Reserved

After executing this command the transceiver is ALWAYS in normal
mode.

Figure 4-1: Structure of a CAN bit time

4.3.2 0x14 CAN
Set Bus Baudrate

Firmware Commands

 smartCAR – User Manual 4-21

Calculation of the baudrate register value:

tq = (BRP + 1) / 40000000 Hz (DIV8X = 0)

 = ((BRP + 1) * 8) / 40000000Hz (DIV8X = 1)

Tsync = 1 * tq

Tseg1 = (TSEG1 + 1) * tq (minimum 3 tq)

Tseg2 = (TSEG2 + 1) * tq (minimum 2 tq)

BitTime = Tsync + Tseg1 + Tseg2 (minimum 8 tq)

Baudrate = 1 / BitTime

 = 1 / (Tsync + Tseg1 + Tseg2)

 = 1 / ((3 + TSEG1 + TSEG2) * tq)

 = 40000000Hz / ((BRP + 1) * (3 + TSEG1 + TSEG2)) (DIV8X = 0)

 = 40000000Hz / (8 * (BRP + 1) * (3 + TSEG1 + TSEG2)) (DIV8X = 1)

Tseg1, Tseg2, Tsync, tq and BitTime are times, TSEG1, TSEG2, DIV8X,
BRP und SJW are bit fields in the CAN bit time register.

Figure 4-2: CAN bit time register

Tsjw = (SJW + 1) * tq

Tseg1 >= Tsjw + Tprop

Tseg2 >= Tsjw

Examples of Register Values:

Register value Baudrate [kBaud] Sample Point [%] Tsjw [tq] Tseg1 [tq] Tseg2 [tq]

0xBE89 25.000 80 3 15 4

0xB989 33.333 73,33 3 10 4

0x7A97 83.333 60 3 11 8

0x1667 100 80 2 7 2

0x165F 125 80 2 7 2

0x3447 500 60 2 5 4

0x1647 500 80 2 7 2

0x3443 1000 60 2 5 4

0x1643 1000 80 2 7 2

Firmware Commands

4-22 smartCAR – User Manual

This command is intended to configure and control the CAN interface
as a CAN Node.
The command is subdivided into several sub-commands
distinguishable by the SubCmd parameter.
The command and response structure for all sub-commands is the
same for all bytes up to Byte 3, while varieties occur starting with
Byte 4 (if more than four bytes exist).

Command and Response:
Byte Indication Description

0 SubCmd 1: SET_FLAG_BY_ID
2: GET_FLAG_BY_ID
3: BAUD_RATE__SET
4: BAUD_RATE__GET

1..3 reserved Reserved (to be set to 0)

FlagId:

Value Meaning
0x0000 DISABLE_SOFTWARE_TX_PATH

Deactivation of sending CAN messages.
The reception of CAN messages remains unchanged.

0x0001 DISABLE_NO_ACK_PAUSES
Deactivation of send pauses when no CAN acknowledge is received

0x0002 DISABLE_BUS_OFF_WAITING
Deactivation of waiting after a bus off, this means the CAN controller is reinitialized
immediately after a bus off

4.3.3 0x1E CAN
Node

Firmware Commands

 smartCAR – User Manual 4-23

Sub-command with SubCmd = SET_FLAG_BY_ID

The command is used to set or clear an individual flag specified by
FlagId.

Command:
Byte Indication Description

4, 5 Id FlagId: Flag identifier
(see FlagId in the 0x1E CAN Node section)

6 Value 0: Clear flag
1: Set flag

7 reserved Reserved

Sub-command with SubCmd = GET_FLAG_BY_ID

The command is used to query an individual flag specified by FlagId.
Command:
Byte Indication Description

4, 5 Id FlagId: Flag identifier
(see FlagId in the 0x1E CAN Node section)

6, 7 reserved Reserved

Response:
Byte Indication Description

4, 5 Id FlagId: Flag identifier
(see FlagId in the 0x1E CAN Node section)

6 Value 0: Flag is cleared
1: Flag is set

7 reserved Reserved

4.3.3.1 SET_FLAG_
BY_ID

4.3.3.2 GET_FLAG_
BY_ID

Firmware Commands

4-24 smartCAR – User Manual

Sub-command with SubCmd = BAUD_RATE__SET

The SubCmd = BAUD_RATE__SET is used to set the baudrate.
Command:
Byte Indication Description

4..7 BaudRate Baudrate in baud (e.g. 500000 for 500 kBaud)

8 SamplePoint_Min Minimum sample point

9 SamplePoint_Max Maximum sample point

10 NumberOfTimeQuanta_Min Minimum number of time quanta (1+TSeg1+TSeg2=8..25)

11 NumberOfTimeQuanta_Max Maximum number of time quanta (1+TSeg1+TSeg2=8..25),
use 0 if you don't want to specify this parameter

12 TSeg1_Min Minimum number of time quanta minus one before sample
point (3..16)

13 TSeg1_Max Maximum number of time quanta minus one before sample
point (3..16)

14 TSeg2_Min Minimum number of time quanta after sample point (2..8)

15 TSeg2_Max Maximum number of time quanta after sample point (2..8)

16 Sjw_Min Minimum resynchronization jump width (1..4)

17 Sjw_Max Maximum resynchronization jump width (1..4)

18, 19 reserved Reserved

Please note for Bytes 8..17: Set the value to 0 if you don't want to
specify this parameter.

Response:
Byte Indication Description

4..7 BaudRate Baud rate in baud (e.g. 500000 for 500 KBaud)

8..11 CanControllerClock CAN controller clock frequency in Hz

12 SamplePoint Sample point

13 NumberOfTimeQuanta Number of time quanta (1+TSeg1+TSeg2)

14 TSeg1 Number of time quanta minus one before sample point (3..16)

15 TSeg2 Number of time quanta after sample point (2..8)

16 Sjw Resynchronization jump width (1..4)

17..19 reserved Reserved

4.3.3.3 BAUD_RATE
SET

Firmware Commands

 smartCAR – User Manual 4-25

Sub-command with SubCmd = BAUD_RATE__GET

The SubCmd = BAUD_RATE__GET is used to get the baudrate.
Response:
Byte Indication Description

4..7 BaudRate Baud rate in baud (e.g. 500000 for 500 KBaud)

8..11 CanControllerClock CAN controller clock frequency in Hz

12 SamplePoint Sample point

13 NumberOfTimeQuanta Number of time quanta (1+TSeg1+TSeg2)

14 TSeg1 Number of time quanta minus one before sample point (3..16)

15 TSeg2 Number of time quanta after sample point (2..8)

16 Sjw Resynchronization jump width (1..4)

17..19 reserved Reserved

4.3.3.4 BAUD_RATE
GET

Firmware Commands

4-26 smartCAR – User Manual

This command defines the CAN message defined by Id.

Command:
Byte Indication Description

0..3 Id Identifier

4, 5 CycleTime Cycle time in milliseconds (1..32767)

6 Mode 0: No sending of the CAN message
1: Sending of the CAN message

7 PrepareMode 0: No preparing of the CAN message
1: Preparing of the CAN message

8 MessageCount 0: Always sending of the CAN message
1 ≤ N ≤ 255: Sending the CAN message N times

9 Dlc Data length (0..8)

10..17 Data[0..7] Data bytes 0..7

18, 19 reserved Reserved

The setting of PrepareMode is used for parallel starting or stopping
several CAN messages (see also
0x28 CAN Start Prepared Messages and
0x29 CAN Stop Prepared Messages).

4.3.4 0x22 CAN
Message Definition

Firmware Commands

 smartCAR – User Manual 4-27

The command is used to change the PrepareMode of the message
defined by Id.
In the case of PrepareMode = 1 several messages prepared before
can be started/ stopped parallel.
The corresponding commands are 0x28 CAN Start Prepared Messages
and 0x29 CAN Stop Prepared Messages.

Command:
Byte Indication Description

0..3 Id Identifier

4 PrepareMode 0: No preparing of the CAN message
1: Preparing of the CAN message

5..7 reserved Reserved

The command is used to change the setting of the Mode and
PrepareMode parameters of the CAN message defined by Id.
Then this CAN message can be sent MessageCount times.

Command:
Byte Indication Description

0..3 Id Identifier

4 Mode 0: No sending of the CAN message
1: Sending of the CAN message

5 PrepareMode 0: No preparing of the CAN message
1: Preparing of the CAN message

6 MessageCount 0: Always sending of the CAN message
1 ≤ N ≤ 255: Sending the CAN message N times

7 reserved Reserved

4.3.5 0x23 CAN
Change

Prepare Mode

4.3.6 0x24 CAN
Change

Message Mode

Firmware Commands

4-28 smartCAR – User Manual

The command is used to change the setting of the Dlc and Data
parameters of the CAN message defined by Id.
Then this CAN message can be sent MessageCount times.

Command:
Byte Indication Description

0..3 Id Identifier

4 ChangeImmediately 0: Data transfer in the cycle
1: Immediate data transfer
2: Immediate data transfer considering a minimum delay
(The message is sent at the earliest possible time after processing
the minimum delay following the previous transmitting of this
message)

5 MessageCount 0: Always sending of the CAN message
1 ≤ N ≤ 255: Sending the CAN message N times

6 Dlc Data length (0..8)

7 reserved Reserved

8..15 Mask[0..7] Mask bytes 0..7

16..23 Data[0..7] Data bytes 0..7
Data is assumed in accordance with the set mask byte bit positions;
in the case no mask byte bits are set, the original data is assumed

In addition, the following parameters are necessary for
ChangeImmediately = 2:

Byte Indication Description

24, 25 MinimumDelayTime Minimum delay between the last sending and sending again of the
CAN message with the identifier Id

26, 27 reserved Reserved

After calling this command, all CAN messages with PrepareMode = 1
are sent.
The command does not have any command bytes.
See also 0x22 CAN Message Definition.

After calling this command, the sending of all CAN messages with
PrepareMode = 1 is stopped.
The command does not have any command bytes.
See also 0x22 CAN Message Definition.

4.3.7 0x25 CAN
Change

Message Data

4.3.8 0x28 CAN
Start Prepared

Messages

4.3.9 0x29 CAN
Stop Prepared

Messages

Firmware Commands

 smartCAR – User Manual 4-29

Use this command to delete ONE CAN message defined by the 0x22
CAN Message Definition command.
After calling the command, not only sending of the CAN message
defined by Id is stopped. Additionally, the CAN message itself is
removed from the internal administration.
Sending again is only possible by 0x22 CAN Message Definition.

Command:
Byte Indication Description

0..3 Id Identifier

With this command selected identifiers can be detected with the
monitor.
If the filter is active, all identifiers between StartId and EndId are
filtered. In the case of a deactivated filter (Mode = 0), all identifiers
“go through”.
In the case only one identifier is to be filtered, use the same value for
StartId and EndId (Mode = 1).

Command:
Byte Indication Description

0 Mode 0: No filter
1: Filter a range
2: Add a range
3: Remove a range

1..3 reserved Reserved

4..7 StartId The Range starts with this identifier

8..11 EndId The Range ends with this identifier

For 11 bit identifiers any number of ranges can be filtered by calling
this command several times (first with Mode = 1, then Mode = 2).
For 29 bit identifiers functionality is limited: Only 10 independent filter
ranges can be filtered at most. “Independent filter ranges” means
these filter ranges must not touch nor overlap each other.

4.3.10 0x2A CAN
Delete one

Message

4.3.11 0x52 CAN
Monitor –

Receiving Filter
Definition

Firmware Commands

4-30 smartCAR – User Manual

This command activates/ deactivates the monitor according to Mode.
When activating, Buffer reception and List reception can be selected.
In the case of Buffer reception more parameters are required.
For Buffer reception, the CAN messages come in in succession into a
ring buffer after passing the monitor filter as sent on the bus/ received
by the bus. The ring buffer can buffer approximately up to 1024 CAN
messages.
In the case of List reception (only 11 bit identifier), a list entry exists
for each identifier. This list entry is updated when receiving/
transmitting the identifier. At any time it can be queried specificly by
giving the identifier.

Command:
Byte Indication Description

0 Mode 0: Deactivating monitor
1: Activating Buffer reception (for the structure see below)
2: Activating List reception (for 11 bit identifiers only)

The following parameters are additionally required for Buffer reception
(Mode = 1):

Byte Indication Description

1 BufferMode 1: Rx (received messages)
2: Tx (sent messages)
3: Rx + Tx (received and sent messages)
4: ErrorFrames
5: ErrorFrames + Rx
6: ErrorFrames + Tx
7: ErrorFrames + Tx + Rx

2 AutomaticEmpty 0: Empty of the buffer on request (with 0xF1)
1: Empty of the buffer automatically

3 reserved Reserved

For Mode = 0 or 2 the bytes 1..3 are reserved
(and should be initialized with 0).

After activating Buffer reception with AutomaticEmpty = 1, the selected
controller independently sends the received CAN frames to the host.
Therefore the host has to read out the controller cyclically. In this
case, monitor responses have the same structure as the response of
the 0xF1 CAN Monitor – Get Buffer Items command.

By activating the monitor with Mode = 1 or 2, the timer TimeStamp
to create the time stamps is set to 0.

The following commands can be used to read monitor data:

In the case of Buffer reception with AutomaticEmpty = 0
0xF1 CAN Monitor – Get Buffer Items.

In the case of List reception
0xF2 CAN Monitor – Get List Item.

4.3.12 0x54 CAN
Monitor –

Activation/
Deactivation

Firmware Commands

 smartCAR – User Manual 4-31

The Transport Protocol (TP) for the multisession channel defined by
Channel is defined by this command.

This firmware command can only be used in the case the transport
protocol to be configured has been enabled before by 0x03 Enable
Functionalities.

A transport protocol is required to exchange data packets with more
than eight bytes of data length (as CAN messages include eight data
bytes at most).
The transport protocol is processing a data segmentation to several
CAN messages, the failure treatement when transferring data and the
temporal adaptation of transmitter and receiver.
This transport protocol can be used for diagnostics among other
things.
After selecting a valid transport protocol Type, the corresponding TP
task starts.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Type Type of Transport protocol:
0: No transport protocol
1: TP1.6
2: TP2.0
3: ISOTP
4: GMLAN
5: J1939
(For the required structures see next pages)

2..3 reserved Reserved

4.3.13 0x81 CAN
TP – Configuration

Firmware Commands

4-32 smartCAR – User Manual

The following parameters are valid for TP1.6:

Byte Indication Description

4 SourceAddress Own control unit address

5 TargetAddress Control unit address of the test object

6 BlockSize Blocksize (0..15, e.g. 3))

7 reserved Reserved

8..11 SourceSetupId Own identifier for channel setup (e.g. 0x200 + SourceAddress)

12..15 TargetSetupId Test object identifier for channel setup (e.g. 0x200 + TargetAddress)

16..19 SourceChannelId Own identifier for data exchange

20..23 TargetChannelId Test object identifier for data exchange

24, 25 T1 Time T1 in milliseconds
(Acknowledgmet timeout for data telegrams, e.g. 45 ms)

26, 27 T2 Time T2 in milliseconds
(maximum time between two sending blocks, e.g. 450 ms)

28, 29 T3 Time T3 in milliseconds
(minimum time between two telegrams, e.g. 5 ms)

30, 31 T4 Time T4 in milliseconds
(Channel timeout if nothing is sent, e.g. 1000 ms)

The following parameters are valid for TP2.0:

Byte Indication Description

4 SourceAddress Own control unit address

5 TargetAddress Control unit address of the test object

6 BlockSize Blocksize (0..15, e.g. 15)

7 ApplicationType Type of application (for Diagnostics = 1)

8..11 SourceSetupId Own identifier for channel setup (e.g. 0x200 + SourceAddress)
Set SourceSetupId to 0xFFFFFFFF in the case of static channels

12..15 TargetSetupId Test object identifier for channel setup (e.g. 0x200 + TargetAddress)
Set TargetSetupId to 0xFFFFFFFF in the case of static channels

16..19 SourceChannelId Own identifier for data exchange
(the SourceChannelId is completely stipulated by the communication
partner in the case of dynamic channels)

20..23 TargetChannelId Test object identifier for data exchange

24, 25 T1 Time T1 in milliseconds
(Acknowledgmet timeout for data telegrams, e.g. 100 ms)

26, 27 T3 Time T3 in milliseconds
(minimum time between two telegrams, e.g. 5 ms)

Firmware Commands

 smartCAR – User Manual 4-33

The following parameters are valid for ISOTP:

Byte Indication Description

4 Physical-
SourceAddress

Own physical control unit address
(not necessary for PhysicalAddressingFormat = 0)

5 Physical-
TargetAddress

Own physical control unit address
(not necessary for PhysicalAddressingFormat = 0)

6 Functional-
SourceAddress

Own functional control unit address(only for simulating ECUs,
not necessary for FunctionalAddressingFormat = 0)

7 Functional-
TargetAddress

Functional control unit address of the test object
(not necessary for FunctionalAddressingFormat = 0)

8..11 PhysicalSourceId Own physical identifier

12..15 PhysicalTargetId Physical control unit identifier of the test object

16..19 FunctionalSourceId Own functional identifier

20..23 FunctionalTargetId Functional control unit identifier of the test object

24 Physical-
AddressingFormat

Physical addressing format (generally 0, normal)
0 = normal
1 = extended
2 = mixed

25 Functional-
AddressingFormat

Functional addressing format (generally 1, extended)
0 = normal
1 = extended
2 = mixed

26 BlockSize Blocksize (e.g. 8)
0: No FlowControl frames are expected between the
ConsecutiveFrames
1 ≤ N ≤ 255: After sending N ConsecutiveFrames one FlowControl
frame is expected

27 SeparationTime Time between CAN frames to be met by the communication partner,
given in milliseconds, e.g. 0 ms

28 Use-
OwnSeparationTime

For segmented sending the following time between the CAN
messages is met:
0: The value for the SeparationTime received from the
communication partner
1: The OwnSeperationTime

29 OwnSeparationTime Self-meeting time between two CAN messages within a segmented
data exchange, given in milliseconds, e.g. 10 ms

30 Flags Generally all flags are 0.
Bit 0 = 0: The SequenceNumber (SN) starts with 1 in the first
ConsecutiveFrame (CF) after a FlowControl frame(FC)
Bit 0 = 1: StartSNWithZero (The SequenceNumber (SN) starts with 0
in the first ConsecutiveFrame (CF) after a FlowControl frame (FC)
Bits 1..7: Reserved

31 reserved Reserved

32, 33 TimeoutAs Sending timeout send-site, given in milliseconds, e.g. 250 ms

34, 35 TimeoutAr Sending timeout receive-site, given in milliseconds, e.g. 250 ms

36, 37 TimeoutBs FlowControl frame receiving timeout send-site,
given in milliseconds, e.g. 250 ms

38, 39 TimeoutCr ConsecutiveFrame receiving timeout receive-site,
given in milliseconds, e.g. 250 ms

Firmware Commands

4-34 smartCAR – User Manual

The following parameters are valid for GMLAN:

Byte Indication Description

4 Physical-
SourceAddress

Own physical control unit address
(not necessary for PhysicalAddressingFormat = 0)

5 Physical-
TargetAddress

Own physical control unit address
(not necessary for PhysicalAddressingFormat = 0)

6 Functional-
SourceAddress

Own functional control unit address (only for simulating ECUs,
not necessary for FunctionalAddressingFormat = 0)

7 Functional-
TargetAddress

Functional control unit address of the test object
(not necessary for FunctionalAddressingFormat = 0)

8..11 PhysicalRequestId Physical request identifier

12..15 PhysicalResponseId Physical response identifier

16..19 AllNode-
FunctionalRequestId

Functional request identifier (e.g. 0x101)

20..23 reserved Reserved

24 Physical-
AddressingFormat

Physical addressing format (generally 0, normal)
0 = normal
1 = extended
2 = mixed

25 Functional-
AddressingFormat

Functional addressing format (generally 1, normal)
0 = normal
1 = extended
2 = mixed

26 BlockSize Blocksize (e.g. 8)
0: No FlowControl frames are expected between the
ConsecutiveFrames
1 ≤ N ≤ 255: After sending N ConsecutiveFrames one FlowControl
frame is expected

27 SeparationTime Time between CAN frames to be met by the communication partner,
given in milliseconds, e.g. 0 ms

28 Use-
OwnSeparationTime

For segmented sending the following time between the CAN
messages is met:
0: The value for the SeparationTime received from the
communication partner
1: The OwnSeperationTime

29 OwnSeparationTime Self-meeting time between two CAN messages within a segmented
data exchange, given in milliseconds, e.g. 10 ms

30, 31 reserved Reserved

32, 33 TimeoutAs Sending timeout send-site, given in milliseconds, e.g. 250 ms

34, 35 TimeoutAr Sending timeout receive-site, given in milliseconds, e.g. 250 ms

36, 37 TimeoutBs Flow control frame receiving timeout send-site,
given in milliseconds, e.g. 250 ms

38, 39 TimeoutCr ConsecutiveFrame receiving timeout receive-site,
given in milliseconds, e.g. 250 ms

40..43 UudtResponseId UUDT response identifier
(UUDT = unacknowledged unsegmented data transfer)

Firmware Commands

 smartCAR – User Manual 4-35

The following parameters are valid for J1939:

Byte Indication Description

4 SourceAddress Own physical control unit address

5 DestinationAddress Physical control unit address of the test object

6, 7 reserved Reserved

8..11 TxTimeout Sending timeout, given in microseconds, e.g. 250000 µs

12..15 RxTimeout Receiving timeout, given in microseconds, e.g. 250000 µs

16..19 DelayTime Pause between individual Data Transfer messages
given in microseconds, e.g. 5000 µs

20..23 Tr Timeout for sending Data Transfer messages
given in microseconds
(should be greater than DelayTime, e.g. 200000 µs)

24..27 Th Timeout to temporarily interrupt the transmission
After expiration of Th at the latest point in time, the transmission is
resumed or a request to innterrupt the transmission is sent anew
given in microseconds, e.g. 500000 µs

28..31 T1 Timeout for receiving a Data Transfer message
given in microseconds, e.g. 750000 µs

32..35 T2 Timeout for receiving the first Data Transfer message after initializing
a point-to-point transmission or resuming the transmission
given in microseconds, e.g. 1250000 µs

36..39 T3 Timeout for receiving an acknowledge after sending a request to
establish the connection or after sending the last Data Transfer
message
given in microseconds, e.g. 1250000 µs

40..43 T4 Timeout after a temporary interruption of the transmission
given in microseconds, e.g. 1050000 µs

If the transport protocol is not needed any more for the indicated
multisession channel, call the 0x81 CAN TP – Configuration command
once again with Type = 0.
Then the corresponding transport protocol task stops, and claimed
resources are available again.

Adressings formats
(PhysicalAddressingFormat and FunctionalAddressingFormat):
normal: There is no address information in the data bytes of a CAN
message.
extended: The TargetAddress is in the first data byte of a CAN
message.
mixed: For remote diagnostics (only for 29 bit identifier)
The AddressExtension is in the first data byte of a CAN message
(the value of the TargetAddress parameter is used for this).

Firmware Commands

4-36 smartCAR – User Manual

The command is used for the dynamical administration of multisession
channels.
A multisession channel is requested for and the corresponding
Channel number is returned in the response when Success = 1.
This multisession channel administration can be necessary if several
applications or software threads do operate with the firmware and
share multisession channels.
If always only one application works with the firmware, a multisession
channel administration of the application is sufficient (no
administration by the firmware is necessary).
The command does not have any command bytes.

Response:
Byte Indication Description

0 Success 0 = No multisession channel available
1 = Success, the following channel is available

1 Channel Multisession channel (starting with 0)

2, 3 reserved Reserved

The command is used for the dynamical administration of multisession
channels. The multisession channel defined by Channel is released.
This multisession channel administration can be necessary if several
applications or software threads do operate with the firmware and
share multisession channels.
If always only one application works with the firmware, a multisession
channel administration of the application is sufficient (no
administration by the firmware is necessary).

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

Broadcast requests or broadcast responses for the multisession
channel defined by Channel are sent by this command.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Request
1: Request with retriggering
2: Response

2, 3 Length Data length (number of data bytes)

4..
(3+Length)

Data Data buffer (0..Length – 1 bytes)

Broadcast requests can be sent repeatedly with Mode = 1 (Request
with retriggering).
Then repetition is deactivated by the 0x8C CAN TP – Stop Broadcast
Retriggering command.

4.3.14 0x82 CAN
TP – Multi session
Channel Request

4.3.15 0x83 CAN
TP – Multi session

Channel Release

4.3.16 0x8A CAN
TP – Send

Broadcast Data

Firmware Commands

 smartCAR – User Manual 4-37

Query data of received broadcast telegrams (requests or responses)
by this command.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 reserved Reserved

2, 3 Length Data length (number of data bytes)

4..
(3+Length)

Data Data buffer (0..Length – 1 bytes)

This command stops cyclically transmitted broadcast telegrams started
with 0x8A CAN TP – Send Broadcast Data and Mode = 1 (Request
with retriggering).

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

4.3.17 0x8B CAN
TP – Get

Broadcast Data

4.3.18 0x8C CAN
TP – Stop
Broadcast

Retriggering

Firmware Commands

4-38 smartCAR – User Manual

This command is used to control a CAN transport channel. The
command is subdivided into several sub-commands distinguishable by
the Mode parameter.
The command and response structure for all sub-commands is the
same for all bytes up to Byte 3, while varieties occur starting with
Byte 4 (if more than four bytes exist).

Command and Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Setting the monitor filter;
The monitor filter is set automatically that way that CAN messages
used by this TP channel pass it;
(Previously, all unwanted CAN messages should be blocked by the
monitor filter)

2, 3 reserved Reserved

The following Command parameters are only valid for Mode = 0:

Byte Indication Description

4 FilterMode 0: Deactivation of monitor filter setting
 (the monitor filter remains unchanged)
1: Activation of monitor filter setting

5..7 reserved Reserved

The following Response parameters are only valid for Mode = 0:

Byte Indication Description

4..7 reserved Reserved

4.3.19 0x8D CAN
TP Control

Firmware Commands

 smartCAR – User Manual 4-39

Configure the CAN diagnostic protocol for the multisession channel
defined by Channel with this command.
The command with Type = 0 is also used to deactivate the complete
diagnostics.

This firmware command can only be used in the case the diagnostic
protocol to be configured has been enabled before by 0x03 Enable
Functionalities.

A transport protocol is prerequisite for the diagnostics (as diagnostic
requests and diagnostic responses can have more than eight data
bytes of data length, but CAN messages include eight data bytes at
most). If a valid Type of diagnostic protocol has been selected, the
corresponding diagnostic task starts when executing this 0xA0 CAN
Diagnostics – Configuration command.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Type Type of diagnostics:
0: No diagnostics
1: Diagnostics KWP2000 on TP1.6
2: Diagnostics KWP2000 on TP2.0
3: Diagnostics KWP2000 on ISOTP
4: Diagnostics for GMLAN
5: Diagnostics UDS on ISOTP
6: Diagnostics J1939
For the required structures see next pages

2 AutomaticEmptyFlags Bit 0: Sending normal diagnostic responses automatically to the host
(see 0xA3 CAN Diagnostics – Get Normal Response Buffer)
Bit 1: Sending asynchronous diagnostic responses automatically to
the host
(see 0xA6 CAN Diagnostics – Get Asynchronous Response Buffer)
Bit 2: Sending UUDT diagnostic responses automatically to the host
(see 0xA7 CAN Diagnostics – Get UUDT Response Buffer)
Bits 3..7: Reserved

3 Mode 0: Set default parameters, with initialization
1: Set parameters, with initialization
2: Only global timeout and setting of flags, no initialisization
3: Set default parameters, no initialization
4: Set parameters, no initialization

4..7 GlobalTimeout Global timeout in milliseconds (starts directly before sending the
requests and stops after complete receiving of the response or after
sending the request successfully if no response is expected
e.g. 10000 ms)

8..11 Flags Generally, all flags are 0.
Bit 0: Disable21Handling (the BusyRepeatRequest negative response
is not treated)
Bit 1: Disable23Handling (the RoutineNotComplete negative response
is not treated)
Bit 2: Disable78Handling (the negative response
RequestCorrectlyReceivedResponsePending is not treated)
Bit 3: AllResponsesAsSync (also unexpectedly received diagnostic
responses are written to the normal diagnostic receiving buffer)
Bits 4..31: Reserved

4.3.20 0xA0 CAN
Diagnostics –
Configuration

Firmware Commands

4-40 smartCAR – User Manual

The following parameters are valid for KWP2000 on TP1.6:

Byte Indication Description

12, 13 P2max Timeout given in milliseconds (maximum time between the end of
the request and the beginning of the response, e.g. 600 ms)

14, 15 Repetitions Number of request repetitions if the control unit does not react
within the P2max timeout (e.g. 2)

16 AddressWord Address word for excitation (ECU address + parity bit)

17 TargetAddress Target address

18 SourceAddress Source address

19 reserved Reserved

20, 21 TesterPresentCycle Cycle for Tester Present in milliseconds (only this parameter of the
Tester Present service can be modified, e.g. 2000 ms)

22..23 reserved Reserved

The following parameters are valid for KWP2000 on TP2.0:

Byte Indication Description

12, 13 P2max Timeout given in milliseconds (maximum time between the end of
the equest and the beginning of the response, e.g. 600 ms)

14, 15 Repetitions Number of request repetitions if the control unit does not react
within the P2max timeout (e.g. 2)

The following parameters are valid for KWP2000 on ISOTP:

Byte Indication Description

12, 13 P2max Timeout given in milliseconds (maximum time between the end of
the request and the beginning of the response, e.g. 200 ms)

14, 15 P3max Timeout given in milliseconds
(maximum time between the end of the request and the beginning
of the response while ResponsePending, e.g. 5000 ms)

16, 17 Repetitions Number of request repetitions if the control unit does not react
within P2max or P3max timeouts (e.g. 2)

18, 19 reserved Reserved

20..35 TesterPresent TesterPresent service (for the structure see below)

The following parameters are valid for a TesterPresent entry for
KWP2000 on ISOTP:

Byte Indication Description

0 Mode Mode for TesterPresent
0 = deactivated
1 = physical
2 = functional

1 ResponseRequired Response for TesterPresent is
0 = not expected
1 = expected

2, 3 Cycle Cycle for TesterPresent in milliseconds (e.g. 1000 ms)

4..6 reserved Reserved

7 Length Data length of TesterPresent service (1..8)

8..15 Data Data of TesterPresent service
starting with Service ID, generally 0x3E

Firmware Commands

 smartCAR – User Manual 4-41

The following parameters are valid for GMLAN:

Byte Indication Description

12, 13 P2max Timeout given in milliseconds (maximum time between the end of
the request and the beginning of the response, e.g. 200 ms)

14, 15 P3max Timeout given in milliseconds
(maximum time between the end of the request and the beginning
of the response while ResponsePending, e.g. 5100 ms)

16, 17 Repetitions Number of request repetitions if the control unit does not react
within the P2max or P3max timeouts (e.g. 2)

18, 19 reserved Reserved

20..35 TesterPresent TesterPresent service (for the structure see below)

The following parameters are valid for a TesterPresent entry for
GMLAN:

Byte Indication Description

0 Mode Mode for TesterPresent
0 = deactivated
1 = physical
2 = functional

1 ResponseRequired Response for TesterPresent is
0 = not expected
1 = expected

2, 3 Cycle Cycle for TesterPresent in milliseconds (e.g. 1000 ms)

4..6 reserved Reserved

7 Length Data length of TesterPresent service (1..8)

8..15 Data Data of TesterPresent service
starting with Service ID, generally 0x3E

Firmware Commands

4-42 smartCAR – User Manual

The following parameters are valid for UDS on ISOTP:

Byte Indication Description

12, 13 P2max Timeout given in milliseconds (maximum time between the end of
the request and the beginning of the response, e.g. 200 ms)

14, 15 P3max Timeout given in milliseconds
(maximum time between the end of the request and the beginning
of the response while ResponsePending, e.g. 5100 ms)

16, 17 Repetitions Number of request repetitions if the control unit does not react
within the P2max or P3max timeouts (e.g. 2)

18, 19 reserved Reserved

20..35 TesterPresent TesterPresent service (for the structure see below)

The following parameters are valid for a TesterPresent entry for
UDS on ISOTP:

Byte Indication Description

0 Mode Mode for TesterPresent
0 = deactivated
1 = physical
2 = functional

1 ResponseRequired Response for TesterPresent is
0 = not expected
1 = expected

2, 3 Cycle Cycle for TesterPresent in milliseconds (e.g. 1000 ms)

4..6 reserved Reserved

7 Length Data length of TesterPresent service (1..8)

8..15 Data Data of TesterPresent service
(starting with Service ID, generally 0x3E 0x00)

Firmware Commands

 smartCAR – User Manual 4-43

The following parameters are valid for J1939:

Byte Indication Description

12..15 T1Timeout Maximum time between the end of the request and the beginning of
the response
Timeout given in microseconds, e.g. 500000 µs

16..19 T2Timeout Time between receiving a “Busy” response
and sending the request anew
Timeout given in microseconds, e.g. 250000 µs

20, 21 Repetitions Number of request repetitions if the control unit does not react
within the T1Timeout, e.g. 2

22, 23 reserved Reserved

24..37 TesterPresent TesterPresent service (for the structure see below)

The following parameters are valid for a TesterPresent entry for
J1939:

Byte Indication Description

0 Mode Mode for TesterPresent
0 = deactivated
1 = physical

1 ResponseRequired Response for TesterPresent is
0 = not expected
1 = expected

2 Length Data length of TesterPresent service (3..11)

3 reserved Reserved

4..7 Cycle Cycle for TesterPresent service in microseconds, e.g. 250000 µs

8..18 Data Data of TesterPresent service
(see below, Message Structure for J1939)

19 reserved Reserved

Firmware Commands

4-44 smartCAR – User Manual

Message Structure for J1939:
J1939 messages are transmitted with 29 bits CAN identifiers. These
identifiers are subdivided into different fields for encoding information
regarding addressing or message content.
To define a J1939 message, the Parameter Group Number (PGN) must
be given in the first three bytes, e.g. 0x00D900 for a Memory Access
Request. Then the data bytes follow.
In the case of functional addressing (PGN ≥ 0xF0), additionally the
Group Extension (GE) must be given in the third byte.

If new memory content is to be transferred to the ECU via Memory
Access Request – Write, this memory content must be appended to the
actual data bytes of the Memory Access Request (see the following
example).

Example: Writing the data sequence 0x010203 via Memory Access
Request – Write:

00 D9 00 01 15 00 00 00 80 FF FF 01 02 03

PGN Data bytes of Memory Access Request Data to be written
(New memory

content)

Received J1939 messages have the same structure.

Firmware Commands

 smartCAR – User Manual 4-45

As a diagnostics refers to a transport protocol, the corresponding
transport protocol must be selected by 0x81 CAN TP – Configuration
before starting the diagnostics with the 0xA0 CAN Diagnostics –
Configuration command.

If the diagnostics is not needed any more for the indicated
multisession channel, call the 0xA0 CAN Diagnostics – Configuration
command once again with Type = 0.
Then the corresponding diagnostic task stops, and claimed resources
are available again.

The following command sequence results for the diagnostics:

♦ In the case multisession channel administration is used:
Request for the multisession channel by 0x82 CAN TP – Multi
session Channel Request

♦ Select the transport protocol with 0x81 CAN TP – Configuration
♦ Select the diagnostics with 0xA0 CAN Diagnostics – Configuration
♦ Use diagnostic with the corresponding diagnostic commands
♦ Stop the diagnostics with 0xA0 CAN Diagnostics – Configuration

and Type = 0
♦ Stop transport protocol with 0x81 CAN TP – Configuration and

Type = 0
♦ In the case multisession channel administration is used:

Release the multisession channel by 0x83 CAN TP – Multi
session Channel Release

Addressing modes:
physical: Communication with an individual ECU
(point-to-point-connection, Unicast)
functional: Communication with a group of ECUs
(point-to-multipoint-connection, Broadcast)

Firmware Commands

4-46 smartCAR – User Manual

This command starts a CAN diagnostic session for the multisession
channel defined by Channel.
Additionally, the diagnostic connection is established.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2, 3 Length Request length (0..(PARAM_SIZE – 4))
(for Length = 0 no request is sent)

4..
(3+Length)

Request General CAN request: Consists of SID (service identifier) and data
J1939 request: See Message Structure for J1939 in the 0xA0 CAN
Diagnostics – Configuration section

4.3.21 0xA1 CAN
Diagnostics –
Start Session

Firmware Commands

 smartCAR – User Manual 4-47

This command is used to send a CAN diagnostic request for the
multisession channel defined by Channel.
Prerequisite is the successful execution of the 0xA1 CAN
Diagnostics – Start Session command before, and the diagnostic
connection must NOT have been disconnected later.
It is necessary to execute this command several times in order to send
larger diagnostic requests (e.g. 1100 bytes) caused by the size of the
command (limited by MESSAGE_SIZE). In this case the Concatenate
and Send parameters must be set accordingly.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2 Send 0 = No sending (only buffer filling)
1 = Sending

3 Concatenate 0 = Write from buffer beginning
1 = append

4 Segmentation Segmentation flag für segmentation on diagnostic level
0 = Request not segmented
1 = Request segmented

5 reserved Reserved

6, 7 Length Request length (1..(PARAM_SIZE – 8))

8..
(7+Length)

Request General CAN request: Consists of SID (service identifier) and data
J1939 request: See Message Structure for J1939 in the 0xA0 CAN
Diagnostics – Configuration section

The Segmentation flag refers to the diagnostic protocol.
As a rule it must not be set by a diagnostic tester.

4.3.22 0xA2 CAN
Diagnostics –
Send Request

Firmware Commands

4-48 smartCAR – User Manual

Query the normal CAN diagnostic response buffer for the multisession
channel defined by Channel with this command.
Only expected diagnostic responses come into the normal diagnostic
response buffer as the corresponding diagnostic request was sent
before.
If a diagnostic response does not fit into a single response, the host
has to call this command several times to fetch the remaining
responses. The last of these responses contains the value “0” in the
RemainingLength parameter.
In addition, the buffer should be read out as long as the Segmentation
bit, the Busy bit or the BufferNotEmpty bit of Flags are set.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 LastErrorCode Error code (0 = no error)

2 Flags Bit 0 = 0: No segmentation on diagnostic level
Bit 0 = 1: Segmentation (on diagnostic level)
Bit 1 = 0: Idle
Bit 1 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 2 = 0: Invalid (this buffer entry is invalid
Bit 2 = 1: Valid (this buffer entry is valid)
Bit 3 = 0: The normal diagnostic response buffer is empty
Bit 3 = 1: BufferNotEmpty
(the normal diagnostic response buffer is not empty yet)
Bits 4..7: Reserved

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4, 5 Length Number of response bytes (0..(PARAM_SIZE – 8))

6, 7 RemainingLength Number of remaining response bytes

8..
(7+Length)

Response General CAN response: Consists of SID (service identifier) and data
J1939 response: See Message Structure for J1939 in the 0xA0 CAN
Diagnostics – Configuration section

4.3.23 0xA3 CAN
Diagnostics –

Get Normal
Response Buffer

Firmware Commands

 smartCAR – User Manual 4-49

This command stops a running CAN diagnostic session for the
multisession channel defined by Channel.
Additionally, the diagnostic connection is released.
To stop the complete diagnostics, call the 0xA0 CAN Diagnostics –
Configuration command again with Type = 0.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2, 3 Length Request length (0..(PARAM_SIZE – 4))
(for Length = 0 no request is sent)

4..
(3+Length)

Request General CAN request: Consists of SID (service identifier) and data
J1939 request: See Message Structure for J1939 in the 0xA0 CAN
Diagnostics – Configuration section

4.3.24 0xA4 CAN
Diagnostics –
Stop Session

Firmware Commands

4-50 smartCAR – User Manual

Query the CAN diagnostic state for the multisession channel defined
by Channel with this command.
Additionally, the firmware internal LastErrorCode can be reset.
The value of the LastErrorCode in the Response corresponds to the
value of the firmware internal LastErrorCode before its resetting.
Generally the firmware internal LastErrorCode is reset automatically
without calling this 0xA5 CAN Diagnostics – Get State command by
starting a diagnostic session by 0xA1 CAN Diagnostics – Start Session
as well as stop of a diagnostic session with 0xA4 CAN Diagnostics –
Stop Session and Length ≠ 0.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 ResetLastError 0 = Do not reset LastErrorCode
1 = Reset LastErrorCode

2, 3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 LastErrorCode Error code (0 = no error)

2 DiagType Type of diagnostics:
0: No diagnostics
1: Diagnostics KWP2000 on TP1.6
2: Diagnostics KWP2000 on TP2.0
3: Diagnostics KWP2000 on ISOTP
4: Diagnostics GMLAN
5: Diagnostics UDS on ISOTP
6: Diagnostics J1939

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4 Flags Bit 0 = 0: Idle
Bit 0 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 1 = 0: The normal diagnostic response buffer is empty
Bit 1 = 1: SyncRxBufferNotEmpty
(the normal diagnostic response buffer is not empty yet)
Bit 2 = 0: The asynchronous diagnostic response buffer is empty
Bit 2 = 1: AsyncRxBufferNotEmpty
(the asynchronous diagnostic response buffer is not empty yet)
Bit 3 = 0: The UUDT diagnostic response buffer is empty
Bit 3 = 1: UudtRxBufferNotEmpty
(the UUDT diagnostic response buffer is not empty yet)
Bits 4..7: Reserved

5..7 reserved Reserved

4.3.25 0xA5 CAN
Diagnostics –

Get State

Firmware Commands

 smartCAR – User Manual 4-51

If the controller receives an unexpected CAN diagnostic response, in
normal cases this response is written by the firmware to a separate
diagnostic response buffer, the Asynchronous Diagnostic Response
Buffer.
Query this buffer for the multisession channel defined by Channel
with the 0xA6 CAN Diagnostics – Get Asynchronous Response Buffer
command.
If a diagnostic response does not fit into a single response, the host
has to call this command several times to fetch the remaining
responses. The last one of these responses contains the value “0” in
the RemainingLength parameter.
In addition, the buffer should be read out as long as the Segmentation
bit or the BufferNotEmpty bit of Flags are set.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 LastErrorCode Error code (0 = no error)

2 Flags Bit 0 = 0: No segmentation on diagnostic level
Bit 0 = 1: Segmentation (on diagnostic level)
Bit 1 = 0: Idle
Bit 1 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 2 = 0: Invalid (this buffer entry is invalid
Bit 2 = 1: Valid (this buffer entry is valid)
Bit 3 = 0: The asynchronous diagnostic response buffer is empty)
Bit 3 = 1: BufferNotEmpty
(the asynchronous diagnostic response buffer is not empty yet)
Bits 4..7: Reserved

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4, 5 Length Number of response bytes (0..(PARAM_SIZE – 8))

6, 7 RemainingLength Number of remaining response bytes

8..
(7+Length)

Response General CAN response: Consists of SID (service identifier) and data
J1939 response: See Message Structure for J1939 in the 0xA0 CAN
Diagnostics – Configuration section

4.3.26 0xA6 CAN
Diagnostics – Get

Asynchronous
Response Buffer

Firmware Commands

4-52 smartCAR – User Manual

When the controller receives a CAN UUDTdiagnostic response (e.g. in
the case of GMLAN), this response is written by the firmware to a
separate diagnostic response buffer, the UUDT Diagnostic Response
Buffer.
Query this buffer for the multisession channel defined by Channel
with the 0xA7 CAN Diagnostics – Get UUDT Response Buffer command.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

4, 5 NumberOf-
Responses

Number of UUDT diagnostic responses (N)

6, 7 NumberOf-
Remaining-
Responses

Number of remaining responses

8..
7+(12*N)

Responses UUDT diagnostic responses (for the structure see below)

A UUDT diagnostic response has the following structure:

Byte Indication Description

0 Dlc Data length (0..8)

1 Flags Bit 0: BufferOverrun
Bits 1..7: Reserved

2, 3 reserved Reserved

4..11 Data[0..7] Data bytes 0..7

The pure data of a UUDT diagnostic response (Data) has a different
structure compared with usual diagnostic data:
As a rule the response service Id (RespSID) and possible negative
response codes (negRespCode) are not transferred on the CAN bus.
Additionally, UUDT CAN messages can be sent parallel to USDT CAN
messages (normal diagnostic CAN messages) on the CAN bus.
That means possible overlapping and: Between segmented
transmission (and the USDT CAN messages) also UUDT CAN messages
can be transferred!

4.3.27 0xA7 CAN
Diagnostics –

Get UUDT
Response Buffer

Firmware Commands

 smartCAR – User Manual 4-53

Prior to sending with the Sending FIFO functionality, this command
should be executed to reset that functionality.
Moreover executing the command is necessary e.g. after a bus short.

Command:
Byte Indication Description

0..3 reserved Reserved

The Sending FIFO functionality serves to send any CAN messages as
fast as possible.
A sending FIFO is necessary as the CAN messages come in packets
from the PC, but are sent in succession with different speeds by the
firmware according to the CAN bus baudrate and arbitration.
CAN messages are sent immediately or input into the TX-FIFO by the
0xB1 CAN TX-FIFO – Send one Message or 0xB2 CAN TX-FIFO –
Send several Messages commands.
Query the TX-FIFO state by the 0xB3 CAN TX-FIFO – Get State
command.

This command is used to send ONE CAN message with the Sending
FIFO functionality.
The submitted CAN message is either sent immediately or input into
the sending FIFO in the case a transmission with the Sending FIFO
functionality is currently executed.

Command:
Byte Indication Description

0..3 Id Identifier

4 Dlc Data length (0..8)

5..7 reserved Reserved

8..15 Data[0..7] Data bytes 0..7

4.3.28 0xB0 CAN
TX-FIFO – Reset

4.3.29 0xB1 CAN
TX-FIFO –

Send one Message

Firmware Commands

4-54 smartCAR – User Manual

This command is used to send SEVERAL CAN messages with the
Sending FIFO functionality.
The CAN message submitted first is either sent immediately or input
into the sending FIFO as all other submitted CAN messages.

Command:
Byte Indication Description

0..3 NumberOfItems Number of CAN messages to be transmitted (N)

4..
3+(N*16)

Items CAN messages (regarding the structure see below)

A CAN message consists of the following 16 bytes:

Byte Indication Description

0..3 Id Identifier

4 Dlc Data length (0..8)

5..7 reserved Reserved

8..15 Data[0..7] Data bytes 0..7

Query the state of the Sending FIFO functionality by this command.
The command does not have any command bytes.

Response:
Byte Indication Description

0..3 NumberOf-
FreeEntries

Number of unused sending entries

4..7 NumberOf-
UsedEntries

Number of used sending entries

Together with the 0xB2 CAN TX-FIFO – Send several Messages
command this command is required to send many CAN messages (e.g.
5,000) as fast as possible without delays if possible (only the pure
transmission times remain).

4.3.30 0xB2 CAN
TX-FIFO – Send

several Messages

4.3.31 0xB3 CAN
TX-FIFO –
Get State

Firmware Commands

 smartCAR – User Manual 4-55

The command is used to query monitor buffer items.
This command does not have any command bytes.

Response:
Byte Indication Description

0..3 NumberOfItems Number of monitor buffer items

4.. Items Monitor buffer entries (for the structure see below)

A monitor buffer entry has the following structure:

Byte Indication Description

0..3 TimeStamp Time stamp with a resolution according to TimeStampResolution

4..7 Id Identifier

8 Flags Bit 0 = 0: 11 bits identifier (STD)
Bit 0 = 1: 29 bits identifier (XTD)
Bit 1 = 0: Received CAN message (RX)
Bit 1 = 1: Sent CAN message (TX)
Bit 2 = 0: No ErrorFrame
Bit 2 = 1: ErrorFrame
Bit 3: Reserved
Bit 4 = 0: No event
Bit 4 = 1: Event
Bits 5, 6: Reserved
Bit 7 = 0: No Bufferoverrun
Bit 7 = 1: Bufferoverrun

9 Dlc Data length (0..8)

10 TimeStampResolution Time stamp resolution:
0: 10 microseconds
1: 400 nanoseconds

11 reserved Reserved

12..19 Data[0..7] Data bytes 0..7

The monitor buffer items are always sized 20 bytes, irrespective of the
Dlc data length.

4.3.32 0xF1 CAN
Monitor –

Get Buffer Items

Firmware Commands

4-56 smartCAR – User Manual

Error-Frames (bit 2 in Flags = 1) are additionally marked by
Id = 0xFFFFFFFF, and in the data byte 0 (Data[0]) there is the LEC
(LastErrorCode) of the on-chip CAN controller located on the chip of the
32-bit microcontroller:

Last
Error
Code

Meaning

0 No error
1 Stuff Error: More than five equal bits in a sequence have occurred in a part of a received

message where this is not allowed.

2 Form Error: A fixed format part of a received frame has the wrong format.

3 Ack Error: The transmitted message was not acknowledged by another node.

4 Bit1 Error: During a message transmission, the CAN node tried to send a recessive level (1),
but the monitored bus value was dominant (outside the arbitration field and the
acknowledge slot).

5 Bit0 Error: Two different conditions are signaled by this code:
a) During transmission of a message (or acknowledge bit, active error flag, overload flag),
the CAN node tried to send a dominant level (0), but the monitored bus value was
recessive (1).
b) During bus-off recovery, this code is set each time a sequence of 11 recessive bits has
been monitored. The CPU may use this code as indication, that the bus is not continuously
disturbed.

6 CRC Error: The CRC checksum of the received CAN message was incorrect.

7..255 reserved

Events (bit 4 in Flags = 1) are additionally marked by
Id = 0xFFFFFFFE, and in the data byte 0 (Data[0]) there is the event
with the following meaning:

LEC Description

0 Rising flank at the trigger input

1 Falling flank at the trigger input

2..255 reserved

Firmware Commands

 smartCAR – User Manual 4-57

This command is to query one monitor list item of the CAN message
indicated by Id.

Command:
Byte Indication Description

0..3 Id Identifier

Response:
Byte Indication Description

0..3 Id Identifier (always the same as that of the command)

4..7 TimeStamp Time stamp with a resolution according to TimeStampResolution

8..11 MessageCount Statement, how often the queried identifier was sent or received

12 Flags Bit 0 = 0: 11 bits identifier (STD)
Bit 0 = 1: 29 bits identifier (XTD)
Bit 1 = 0: Received CAN message (RX)
Bit 1 = 1: Sent CAN message (TX)
Bits 2..7: Reserved

13 Dlc Data length (0..8)

14 TimeStampResolution Time stamp resolution:
0: 10 microseconds
1: 400 nanoseconds

15 reserved Reserved

16..23 Data[0..7] Data bytes 0..7

4.3.33 0xF2 CAN
Monitor –

Get List Item

Firmware Commands

4-58 smartCAR – User Manual

4.4 LIN Commands
The LIN commands for your GOEPEL hardware are described in this
chapter.

For general information valid for all firmware commands refer to the
General Firmware Notes section in this User Manual.

After a power-on or software reset, the following firmware commands
should be executed in that order:

♦ 0x12 LIN Init Interface
♦ 0x14 LIN Set Interface Properties
♦ 0x15 LIN Set Checksum Model

(in the case of LIN2.0 for the individual identifiers)

for LIN master:

♦ 0x81 LIN Relays – Setting
(for switching on to master operation)

♦ 0x22 LIN Fill Schedule Table
♦ 0x23 LIN Fill Frame Response Table
♦ 0x28 LIN Master – Start Transmitting

for LIN slave:

♦ 0x23 LIN Fill Frame Response Table

Firmware Commands

 smartCAR – User Manual 4-59

Initial state:
After a power-on or software reset, the master task is deactivated,
while the slave task is activated (for monitoring).
The slave task operates with an automatic baud rate recognition, a
BreakDetectionThreshold of 9.5 bit times and with the classic checksum
model (see Explanation). This way the LIN bus can be monitored with
the LIN bus monitor without announcing the baud rate (0x54 LIN
Monitor – Activation/ Deactivation command).

The firmware internal ResponseSpace and InterByteSpace variables
are initialized by 0. However, on the LIN bus ResponseSpace and
InterByteSpace appear with 0..1 bit times, as the UART is used for
transmitting.

Explanation:
Classic checksum = checksum via data bytes
Enhanced checksum = checksum via identifier byte and data bytes

The firmware operates with a value of 9.5 bit times for the
BreakDetectionThreshold in contrast to the LIN Specification (11 bit
times) for bus monitoring, to be able to detect breaks shorter than
11 bit times.
At any time, the value for the BreakDetectionThreshold can be
modified by the 0x46 LIN Set Break DetectionThreshold command.

Structure of a LIN Cluster

The following information is taken from the LIN Specification 2.0.

Figure 4-3: Structure of a LIN cluster

A LIN cluster consists of one master task and several slave tasks.
The LIN master (master node) includes one master task and one slave
task.
Each LIN slave (slave node) includes only one slave task.

Firmware Commands

4-60 smartCAR – User Manual

Structure of a LIN Frame

The following information is taken from the LIN Specification 2.0.

Figure 4-4: Structure of a LIN Frame

Essentially a LIN Frame (LIN message) consists of the LIN Frame
Header and the LIN Frame Response.
The Header is exclusively sent by the master task of the LIN master
(master node).
The Response is sent by a slave task of the master node or of a
slave node.

The pause between Header and Response is called Response space.

The following example shows a LIN message of two data bytes,
consisting of Header and Response.
All time-parameters whithin a LIN message changeable by the
firmware can be seen (BreakTime, BreakDelimiterTime, ArbitrationTime,
ResponseSpace and InterByteSpace):

BreakTime

BreakDelimiterTime

SyncByte IdentifierByte

ArbitrationTime ResponseSpace

DataByte1 DataByte2

InterByteSpace

Header Response

Frame

ChecksumByte

InterByteSpace

Figure 4-5: LIN message

The continous lines above and below the LIN signal indicate that this
signal can have VBat (high) level as well as Gnd (low) level during
the corresponding times.

Firmware Commands

 smartCAR – User Manual 4-61

This command resets the selected LIN interface without software reset
to the initial state. Additionally, further configuration possibilities are
offered.
Interface selection is made by the TargetAddress and TargetPort
parameters in the header of the command.
The command bytes are optional. If there are no command bytes, the
firmware runs with 0 for the optional command bytes.

Command:
Byte Indication Description

0 reserved Reserved

1 DontUseUartForTx 0: Use UART for transmitting (default)
1: No use of UART for transmitting

2 ResetRelays 0: No reset of the relays (default)
1: Reset of the relays

3 BlinkMode 0: Flickering of the LEDs deactivated (default)
1: Flickering of the LEDs activated

For sending without jitters (ResponseSpace Jitters) and modifications
of ArbitrationTime, ResponseSpace and InterByteSpace, set the
DontUseUartForTx parameter to 1, as in the case of sending with
UART delays (jitters) may occur up to one bit time.
For other cases, sending with UART means only little CPU load.

4.4.1 0x12 LIN
Init Interface

Firmware Commands

4-62 smartCAR – User Manual

The properties of the selected LIN interface are set with this
command.

Command:
Byte Indication Description

0 EnableMasterTask 0: Deactivating the master task
1: Activating the master task (for the structure see below)

1 EnableSlaveTask 0: Deactivating the slave task
1: Activating the slave task (for the structure see below)
Note: For monitoring the slave task must be activated,
that means, the EnableSlaveTask parameter is to be set to 1.

2, 3 reserved Reserved

Parameters of the master task:

Byte Indication Description

4..7 BaudRate BaudRate in Hz
8..11 BreakTime BreakTime in multiples of 25 ns

(generally 13 Bit-times, e.g. 27083 for 19200 Baud)
(Time that announces the start of a new LIN frame, duration of the
low level of the Break, see Figure 4-5)

12..15 BreakDelimiterTime BreakDelimiterTime in multiples of 25 ns
(generally 1 Bit-time, e.g. 2083 for 19200 Baud)
(Time between the end of the low level of the Break and the
beginning of the StartBit of the SyncByte or duration of the high
level of the BreakDelimiter, see Figure 4-5)

16..19 ArbitrationTime only for Advanced library, otherwise to be initialized by 0
ArbitrationTime in multiples of 25 ns (generally 0)
(Time between the end of the StopBit of the SyncByte and the
beginning of the StartBit of the IdentifierByte, see Figure 4-5)

4.4.2 0x14 LIN
Set Interface

Properties

Firmware Commands

 smartCAR – User Manual 4-63

Parameters of the slave task:

Byte Indication Description

20 EnableBaudRate-
Detection

0: Baudrate detection deactivated
1: Baudrate detection activated

21..23 reserved Reserved

24..27 BaudRate BaudRate in Hz
28..31 ResponseSpace ONLY for Advanced library, otherwise to be initialized by 0

ResponseSpace in multiples of 25 ns (generally 0)
(Time between the end of the StopBit of the IdentifierByte and the
beginning of the StartBit of the Response
or time between Header and Response, see Figure 4-5)

32..35 InterByteSpace ONLY for Advanced library, otherwise to be initialized by 0
InterByteSpace in multiples of 25 ns (generally 0)
(Time between the end of the StopBit of a Response DataByte and
the beginning of the StartBit of the next Response DataByte, see
Figure 4-5)

The monitor commands do NOT provide results if the slave
task is deactivated!!!

Please note the following: The UART should NOT be used for
transmitting to create the ArbitrationTime, ResponseSpace and
InterByteSpace times (see 0x12 LIN Init Interface command).

Please note also: The sending moment for the LIN Frame response,
defined by ResponseSpace, is falsified by the transceiver running
times (receiving and transmitting running time).
The complete running time of a transceiver depends on its type.
The range is between 5 and 15 µs (generally 8 to 9 µs).

Use this command to set the checksum model.

Command:
Byte Indication Description

0 CheckSumModel 0: Classic (checksum only via data bytes)
1: Enhanced (checksum via identifier and data bytes)

1 NumberOfIds Number of identifiers (N)

2 SelectAll 0: Setting is valid only for the identifiers indicated by Ids
1: Setting is valid for all identifiers

3 reserved Reserved

4..
(3+N)

Ids Identifier list (one byte per identifier)

4.4.3 0x15 LIN
Set

Checksum Model

Firmware Commands

4-64 smartCAR – User Manual

Use this command to fill a LIN Schedule table.
Altogether there are 16 Schedule tables with 256 entries each in the
firmware.
The command has to be executed several times if the table to be filled
has more entries as fit into the command itself. In this case the
Concatenate parameter must be set accordingly.

Command:
Byte Indication Description

0 ScheduleTable-
Number

Number of the Schedule table (0..15)

1 Concatenate 0: Write from the beginning of the table
1: Append table entries

2 IdAsIdCode 0: The protected identifier is calculated according to the specification
by the firmware
1: The protected identifier is assumed as submitted
(sendig an invalid identifier is possible then!)

3..5 reserved Reserved

6, 7 NumberOfItems Number of table entries (N)

8..
7+(N*8)

Items Table entries (for the structure see below)

A Schedule table Item consists of the following eight bytes:

Byte Indication Description

0 Id Identifier

1 FrameType 0: UnconditionalFrame – „normal“ messages
1: EventTriggeredFrame – event triggered messages
2: SporadicFrame – sporadic messages
3: DiagnosticFrame – diagnostic messages (0x3C and 0x3D)

2 FrameListIndex List index for Event Triggered Frames and Sporadic Frames
(starting with 0)

3 reserved Reserved

4..7 Delay Delay to the next LIN frame in multiples of 25 ns
(e.g. 400000 for a Delay of 10 ms)

The Delay range of values is 10000..0xFFFFFF (16777215),
that means 24 bits only.
That correponds to a
minimum delay of 250 µs and a
maximum delay of about 419 ms.

Similar to the Frames list for the Unconditional Frames of a LIN
Description File (LDF file), there is possibly an Event_triggered_frames
list for Event Triggered Frames or a Sporadic_frames list for Sporadic
Frames.
FrameListIndex is the index in these lists.

4.4.4 0x22 LIN
Fill Schedule Table

Firmware Commands

 smartCAR – User Manual 4-65

Use this command to fill the LIN Frame response table.
The command has to be executed several times if the table to be filled
has more entries as fit into the command itself.
The command automatically defines the LIN Frame responses given in
the individual table Items by Id.

Command:
Byte Indication Description

0, 1 NumberOfItems Number of table entries (N)

2, 3 reserved Reserved

4..
3+(N*12)

Items Table entries (for the structure see below)

A LIN Frame response table Item consists of the following 12 Bytes:

Byte Indication Description

0 Id Identifier (0x00..0x3F)

1 Length Data length

2, 3 reserved Reserved

4..11 Data[0..7] Data bytes 0..7

As an alternative to this command there is the 0x30 LIN Frame
Response Definition command, offering further features.

Use this command to send one wakeup request.

Command:
Byte Indication Description

0..3 WakeUpTime Duration of the dominant bus level in multiples of 25 ns,
(e.g. 10000 for eine WakeUp time of 250 µs)
(0 = Default WakeUpTime)

In the case of 0 as WakeUpTime, the default WakeUpTime is eight bit
times. According to LIN 2.0 Specification, the WakeUpTime should have
a value of 250 µs to 5 ms.

4.4.5 0x23 LIN
Fill Frame

Response Table

4.4.6 0x24 LIN
Send

WakeUp Request

Firmware Commands

4-66 smartCAR – User Manual

This command sets the slave controller in the sleep state or “awakes”
it from that state.

Command:
Byte Indication Description

0 Awake 0: Sleep state
1: Awake state

1..3 reserved Reserved

The master task starts processing the indicated LIN Schedule table.
That means the corresponding LIN frame headers are sent.

Command:
Byte Indication Description

0 ScheduleTableNumber Number of the Schedule table
1..3 reserved Reserved

The indicated Schedule table is always processed starting with the
FIRST entry.

The master task stops to send LIN frame headers.

This command does not have any command bytes.

Empty the indicated Schedule table by this command.

Command:
Byte Indication Description

0 ScheduleTableNumber Number of the Schedule table
1..3 reserved Reserved

4.4.7 0x25 LIN
Set Slave Task

State

4.4.8 0x28 LIN
Master – Start

Transmitting

4.4.9 0x29 LIN
Master – Stop
Transmitting

4.4.10 0x2A LIN
Clear

Schedule Table

Firmware Commands

 smartCAR – User Manual 4-67

With this command it is possible to remove all or only the entries
defined by Ids from the LIN Frame response table.

Command:
Byte Indication Description

0, 1 NumberOfIds Number of identifiers (N)

2 SelectAll 0: Remove only table items indicated by Ids
1: Remove all table items

3 reserved Reserved

4..
(3+N)

Ids Identifier list (one byte per identifier)

Use the command to define the LIN Frame response indicated by Id.
Defining a LIN Frame response by this command offers an alternative
to 0x23 LIN Fill Frame Response Table to send LIN Frame responses.
But this command offers further features, e.g. a limited sending
number (MessageCount ≠ 0).

Please pay attention that a LIN Frame response is only sent if the
master task (on this or on another LIN node) sent the corresponding
LIN frame header before.

Command:
Byte Indication Description

0 Id Identifier (0x00..0x3F)

1 Mode 0: No sending of the LIN Frame response
1: Sending of the LIN Frame response

2 reserviert Reserved

3 MessageCount 0: Send LIN Frame response always
1 ≤ N ≤ 255: Send LIN Frame response N times

4 Dlc Data length (0..8)

5..7 reserved Reserved

8..15 Data[0..7] Data bytes 0..7

Sending LIN frame headers is NOT released or influenced by this
command.

4.4.11 0x2B LIN
Remove Frame
Response Table

Items

4.4.12 0x30 LIN
Frame Response

Definition

Firmware Commands

4-68 smartCAR – User Manual

After calling this command, not only the output of the LIN Frame
response indicated by Id is stopped. The LIN Frame response itself is
deleted from the internal administration.
Another LINFrame response output is only possible after executing the
0x30 LIN Frame Response Definition command.

Command:
Byte Indication Description

0 Id Identifier (0x00..0x3F)

1..3 reserved Reserved

This command sets the BaudRate parameter, but without having to
call the 0x14 LIN Set Interface Properties command completely.

Command:
Byte Indication Description

0..3 BaudRate BaudRate in Baud (generally 19200);
In the case of 0 for BaudRate, the automatic baud rate detection is
activated

The BaudRate range of values is 700..125000.
That corresponds to a minimum BaudRate of 700 Baud and a
maximum BaudRate of 125 KBaud.

This command sets the BreakDetectionThreshold parameter.

Command:
Byte Indication Description

0..3 BreakDetection-
Threshold

BreakDetectionThreshold in percent of the bit time (generally 950)
BreakDetectionThreshold for GOEPEL electronic Firmware:
9.5 bit-times (in contrast to the LIN Specification with 11 bit-times)
for bus monitoring, to be able to detect breaks shorter than 11 bit-
times

4.4.13 0x31 LIN
Delete

Frame Response

4.4.14 0x40 LIN
Set Bus BaudRate

4.4.15 0x46 LIN
Set Break
Detection
Threshold

Firmware Commands

 smartCAR – User Manual 4-69

This command sets the WakeUpDelimiterTime parameter.
The WakeUpDelimiterTime determines the point in time the Master task
(if activated) starts again processing the Schedule table (i.e. sending)
after the end of the dominant level of a WakeUp.
According to LIN 2.0 Specification, all Slaves should be ready to receive
LIN messages 100 ms after a WakeUp. That means 100 ms after the
end of a WakeUp the Maste task should start communication again.

Command:
Byte Indication Description

0..3 WakeUpDelimiterTime WakeUpDelimiterTime in multiples 25 ns,
(e.g. 4000000 for a WakeUpDelimiterTime of 100 ms)
(0: Default WakeUpDelimiterTime)

In the case of 0 for WakeUpDelimiterTime, the firmware uses the
default WakeUpDelimiterTime of four bit times.

With this command selected identifiers can be detected with the LIN
monitor. In the case of a deactivated filter (that means Mode = 0), all
identifiers “go through”.
If the filter is active, all identifiers between StartId and EndId
(Mode = 1) or all identifiers indicated by Ids (Mode = 2) are filtered.
In the case only one identifier is to be filtered, use the same value for
StartId and EndId (Mode = 1).

Command:
Byte Indication Description

0 Mode 0: No Filter
1: Filter a range (for the structure see below)
2: Filter certain identifiers (given by Ids, for the structure see below)

1..3 reserved Reserved

Parameters for Mode = 1:

Byte Indication Description

4 StartId Start identifier for the range

5 EndId End identifier for the range

6, 7 reserved Reserved

Parameters for Mode = 2:

Byte Indication Description

4 NumberOfIds Number of identifiers (N)

5..
(4*N)

Ids Identifier list (one byte per identifier)

4.4.16 0x47 LIN
Set WakeUp

DelimiterTime

4.4.17 0x52 LIN
Monitor –

Receiving Filter
Definition

Firmware Commands

4-70 smartCAR – User Manual

This command serves to activate/ deactivate the Buffer reception
Mode.
For this Mode, the LIN messages come in in succession into a ring
buffer after passing the monitor filter as sent on the bus/ received by
the bus.

Command:
Byte Indication Description

0 Mode 0: Deactivating monitor
1: Activating Buffer reception (for the structure see below)

In addition, the following parameters are required for Buffer reception
(Mode = 1):

Byte Indication Description

1 BufferMode 1: Rx (received LIN frame)
2: Tx (sent LIN frame)
3: Rx+Tx (received and sent LIN frames)
4: WakeUp
5: WakeUp + Rx
6: WakeUp + Tx
7: WakeUp + Tx + Rx

2 AutomaticEmpty 0: Empty of the buffer on request
1: Empty of the buffer automatically

3 Type 1: Small monitor entries

For Mode = 0 or 2, the bytes 1..3 are reserved
(and should be initialized with 0).

The monitor commands do NOT provide results if the slave
task is deactivated!!!

After activating Buffer reception with AutomaticEmpty = 1, the
controller independently sends the received LIN frames to the host.
Therefore the host has to read out the controller cyclically. In this
case, monitor responses have the same structure as the responses of
the 0xF2 LIN Monitor – Get Small Buffer Items command.

By activating the monitor with Mode = 1, the timer for creating the
StartTime time stamp is set to 0
(see 0xF2 LIN Monitor – Get Small Buffer Items).

To read monitor data in the case of Buffer reception with
AutomaticEmpty = 0, the 0xF2 LIN Monitor – Get Small Buffer Items
command is used.

4.4.18 0x54 LIN
Monitor –

Activation/
Deactivation

Firmware Commands

 smartCAR – User Manual 4-71

All relays (SelectAll = 1) or the relays defined by Relays (SelectAll = 0,
NumberOfRelays ≠ 0) are set by this command.

Command:

Byte Indication Description
0 NumberOfRelays Number of the relays to be set (N)

1 SelectAll 0: Setting is valid only for the relays indicated by Relays
1: Setting is valid for all relays

2, 3 reserved Reserved

4..
(3+N)

Relays Relay list
(in each byte there is the number of the corresponding relay)

Look for the numbers of the required relays in the Hardware section
of this User Manual (see Communication Interfaces/ LIN).

All relays (SelectAll = 1) or the relays defined by Relays (SelectAll = 0,
NumberOfRelays ≠ 0) are reset by this command.

Command:

Byte Indication Description
0 NumberOfRelays Number of the relays to be reset (N)

1 SelectAll 0: Resetting is valid only for the relays indicated by Relays
1: Resetting is valid for all relays

2, 3 reserved Reserved

4..
(3+N)

Relays Relay list
(in each byte there is the number of the corresponding relay)

Look for the numbers of the required relays in the Hardware section
of this User Manual (see Communication Interfaces/ LIN).

4.4.19 0x81 LIN
Relays – Setting

4.4.20 0x82 LIN
Relays – Resetting

Firmware Commands

4-72 smartCAR – User Manual

Set (Relays bit = 1) or reset (Relays bit = 0) the relays according to
the Relays bits by this command.

Command:

Byte Indication Description
0, 1 Relays Bit 0: Relay 1

Bit 1: Relay 2
Bit 2: Relay 3
Bit 3: Relay 4
etc.
Bit 15: Relay 16

2, 3 reserved Reserved

Look for the numbers of the required relays in the Hardware section
of this User Manual (see Communication Interfaces/ LIN).

Query the state of the relays by this command.
The command does not have any command bytes.

Response:

Byte Indication Description

0, 1 Relays Bit 0: Relay 1
Bit 1: Relay 2
Bit 2: Relay 3
Bit 3: Relay 4
etc.
Bit 15: Relay 16

2, 3 reserved Reserved

A set Relays bit indicates that the corresponding relay is set.
Correspondingly, a reset Relays bit indicates a reset relay.

Look for the numbers of the required relays in the Hardware section
of this User Manual (see Communication Interfaces/ LIN).

4.4.21 0x83 LIN
Relays –

Direct Setting

4.4.22 0x84 LIN
Relays – Get State

Firmware Commands

 smartCAR – User Manual 4-73

Configure the LIN diagnostic protocol for the multisession channel
defined by Channel with this command.
The command with Type = 0 is also used to deactivate the complete
diagnostic.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Type Type of diagnostics:
0: No diagnostics
1: Diagnostics in RAW mode
2: Diagnostics according to LIN 2.0
(For the required structures see next pages)

2 AutomaticEmpty 0: No automatic empty of response buffer
1: Automatic empty of response buffer
(Control unit’s diagnostic response is sent automatically to the host)

3 TxMethod Sending or Scheduling mode for MasterRequest IDs and
SlaveResponse IDs
0: Diagnostic identifiers (MasterRequest ID and SlaveResponse ID)
are contained in the Schedule Table
1: Sending the MasterRequest ID or the SlaveResponse ID in a
Sporadic Frame Slot, unless a Spodadic Frame is sent at this moment
(regarding Frame Slot see also Figure 4-4)
2: Sending ONCE a MasterRequest ID or SlaveResponse ID at the
end of the Schedule Table
3: Sending of ALL MasterRequest IDs and SlaveResponse Ids at the
end of the Schedule Table, as long as the Diagnostic Request is sent
and the Diagnostic Response is received completely
4: The normal Schedule Table is interrupted for a Diagnostic Request
and its belonging Diagnostic Response as long as all corresponding
MasterRequest IDs and SlaveResponse IDs are sent

For TxMethod = 2, 3, 4 usually a schedule delay of 192 bit times is
used.
For a baudrate of 19200 Baud, this delay is 10 ms.
By the 0xA8 LIN Diagnostics – Change Timing command you can
change this value.

4.4.23 0xA0 LIN
Diagnostics –
Configuration

Firmware Commands

4-74 smartCAR – User Manual

The following parameters are valid for diagnostics in RAW Mode:

Byte Indication Description

4, 5 reserved Reserved

6, 7 P2max P2max timeout in milliseconds (maximum time between end of the
requests and beginning of the response, e.g. 200 ms)

8, 9 P3max P3max timeout in milliseconds
(maximum time between end of the requests and beginning of the
response during ResponsePending, e.g. 5100 ms)

9, 11 Repetitions Number of repetitions of the request,
if the ECU does not react within the P2max or
P3max timeouts, e.g. 2

12 DefaultMasterData.
Enabled

0: DefaultMasterRequestFrame deactivated
1: DefaultMasterRequestFrame activated

13..15 DefaultMasterData.
reserved

Reserved

16..23 DefaultMasterData.
Data

Data of DefaultMasterRequestFrame

24 DefaultSlaveData.-
Enabled

0: DefaultSlaveResponseFrame deactivated
1: DefaultSlaveResponseFrame activated

25..27 DefaultSlaveData.-
reserved

Reserved

28..35 DefaultSlaveData.-
Data

Data of DefaultSlaveResponseFrame

36 TesterPresent.-
Enabled

0: TesterPresent deactivated
1: TesterPresent activated

37 TesterPresent.-
ResponseRequired

Response for TesterPresent is
0: Not expected
1: Expected

38, 39 TesterPresent.-
Cycle

Cycle for TesterPresent in milliseconds, e.g. 1000 ms

40..47 TesterPresent.Data RAW data of TesterPresent service

48 RxEndCondition End recognition of diagnostic responses in the case of multi frames
0: Only single frames (no multi frames)
1: Empty slot (no response from the slave)
2: Default slave response frame
3: Same frame

49, 50 reserved Reserved

51 NumberOf-
SpecialResponses

Number of special diagnostic responses (N)

52..
51+(N*20)

SpecialResponses Special diagnostic response entries
(e.g. 0x21 - busy-RepeatRequest or 0x23 – routineNotComplete)
for the structure see next page

Firmware Commands

 smartCAR – User Manual 4-75

An entry in SpecialResponses consists of the following 20 bytes:

Byte Indication Description

0..7 Mask[0..7] Mask bytes 0..7

8..15 Data[0..7] Data bytes 0..7 (Data is compared with the received data in
accordance with the set mask bytes bits)

16 Flags Bit 0: Repeat request
Bit 1: Change timing (P2max to P3max)
Bit 2: Default frame
Bit 3: Last frame
Bit 4: Ignoring the received frame in the case data does not
coincides according to Mask and Data
Bits 5..7: Reserved

17..19 reserved Reserved

Any received diagnostic response frame is compared with the
SpecialResponses. This happens by a logical AND of the received data
with Mask followed by binary comparision of the result with Data.

Firmware Commands

4-76 smartCAR – User Manual

The following parameters are valid for diagnostics according to LIN2.0:

Byte Indication Description

4 NAD Address of the control unit (NODE ADDRESS)

5 reserved Reserved

6, 7 P2max P2max timeout in milliseconds (maximum time between end of the
requests and beginning of the response, e.g. 200 ms)

8, 9 P3max P3max timeout in milliseconds
(maximum time between endof the requests and beginning of the
response during ResponsePending, e.g. 5100 ms)

10, 11 Repetitions Number of repetitions of the request,
if the ECU does not react within the P2max or P3max timeouts,
(e.g. 2)

12 TesterPresent.Enabled 0: TesterPresent is deactivated
1: TesterPresent is activated

13 TesterPresent.
ResponseRequired

Response for TesterPresent is
0: Not expected
1: Expected

14, 15 TesterPresent.Cycle Cycle for TesterPresent in milliseconds, e.g. 1000 ms

16..18 TesterPresent.-
reserved

Reserved

19 TesterPresent.Length Data length of TesterPresent service (1..8)

20..27 TesterPresent.Data Data of TesterPresent service
starting with Service ID, generally 0x3E

After selecting a valid diagnostic Type, the corresponding diagnostic
task starts when executing the 0xA0 LIN Diagnostics – Configuration
command.
If diagnostics is not needed any more, call the 0xA0 LIN Diagnostics –
Configuration command once again with Type = 0.
Then the diagnostic task stops, and claimed resources are available
again.

The following command sequence results for using the diagnostics:

♦ Select the Type of diagnostic by the 0xA0 LIN Diagnostics –
Configuration command,

♦ Use diagnostics with its commands,
♦ Stop diagnostics by the 0xA0 LIN Diagnostics – Configuration

command and Type = 0.

Addressing modes:
physical: Communication with an individual ECU
(point-to-point-connection, Unicast)
functional: Communication with a group of ECUs
(point-to-multipoint-connection, Broadcast)

Firmware Commands

 smartCAR – User Manual 4-77

This command starts a LIN diagnostic session for the multisession
channel defined by Channel.
Additionally, the diagnostic connection is established.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2, 3 Length Request length (0..(PARAM_SIZE – 4))
(for Length = 0 no request is sent)

4..
(3+Length)

Request Request, consisting of SID (service identifier) and data

This command is used to send a LIN diagnostic request for the
multisession channel defined by Channel.
Prerequisite is the successful execution of the 0xA1 LIN
Diagnostics – Start Session command before, and the diagnostic
connection must NOT have been disconnected.
It is necessary to execute this command several times in order to send
larger diagnostic requests (e.g. 1100 bytes) caused by the size of the
command (limited by MESSAGE_SIZE). In this case the Concatenate
and Send parameters must be set accordingly.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2 Send 0 = No sending (only buffer filling)
1 = Sending

3 Concatenate 0 = Write from buffer beginning
1 = append

4 Segmentation Segmentation flag for segmentation on diagnostic level
0 = Request not segmented
1 = Request segmented

5 reserved Reserved

6, 7 Length Request length (1..(PARAM_SIZE – 8))

8..
(7+Length)

Request Request, consisting of SID (service identifier) and data

The Segmentation flag refers to the diagnostic protocol.
As a rule it must NOT be set by a diagnostic tester.

4.4.24 0xA1 LIN
Diagnostics –
Start Session

4.4.25 0xA2 LIN
Diagnostics –
Send Request

Firmware Commands

4-78 smartCAR – User Manual

Query the LIN diagnostic response buffer for the multisession channel
defined by Channel with this command.
If a diagnostic response does not fit into a single response, the host
has to call this command several times to fetch the remaining
responses. The last one of these responses contains the value “0” in
the RemainingLength parameter.
In addition, the buffer should be read out as long as the Segmentation
bit, the Busy bit or the BufferNotEmpty bit of Flags are set.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession-Kanal (beginnend mit 0)

1 LastErrorCode Fehlercode (0 = kein Fehler)

2 Flags Bit 0 = 0: No segmentation on diagnostic level
Bit 0 = 1: Segmentation (segmentation on diagnostic level)
Bit 1 = 0: Idle
Bit 1 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 2 = 0: Invalid (this buffer entry is invalid
Bit 2 = 1: Valid (this buffer entry is valid)
Bit 3 = 0: The diagnostic response buffer is empty
Bit 3 = 1: BufferNotEmpty
(the diagnostic response buffer is not empty yet)
Bits 4..7: Reserved

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4, 5 Length Number of response bytes (0..(PARAM_SIZE – 8))

6, 7 RemainingLength Number of remaining response bytes

8..
(7+Length)

Response Response, consisting of SID (service identifier) and data

4.4.26 0xA3 LIN
Diagnostics – Get

ResponseBuffer

Firmware Commands

 smartCAR – User Manual 4-79

This command stops a running LIN diagnostic session for the
multisession channel defined by Channel.
Additionally, the diagnostic connection is released.
To stop the complete diagnostic, call the 0xA0 LIN Diagnostics –
Configuration command again with Type = 0.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2, 3 Length Request length (0..(PARAM_SIZE – 4))
(for Length = 0 no request is sent)

4..
(3+Length)

Request Request, consisting of SID (service identifier) and data

4.4.27 0xA4 LIN
Diagnostics –
Stop Session

Firmware Commands

4-80 smartCAR – User Manual

Query the LIN diagnostic state for the multisession channel defined by
Channel with this command.
Additionally, the firmware internal LastErrorCode can be reset.
The value of the LastErrorCode in the Response corresponds to the
value of the firmware internal LastErrorCode before its resetting.
Generally the firmware internal LastErrorCode is reset automatically
without calling this 0xA5 LIN Diagnostics – Get State command by
starting a diagnostic session by 0xA1 LIN Diagnostics – Start Session
and stop of a diagnostic session with 0xA4 LIN Diagnostics – Stop
Session and Length ≠ 0.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 ResetLastError 0 = No reset of the LastErrorCode
1 = Reset of the LastErrorCode

2, 3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 LastErrorCode Error code (0 = no error)

2 DiagType Type of diagnostics:
0: No diagnostics
1: Diagnostics in RAW Mode
2: Diagnostics according to LIN 2.0

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4 Flags Bit 0 = 0: Idle
Bit 0 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 1 = 0: The diagnostic response buffer is empty
Bit 1 = 1: RxBufferNotEmpty
(the diagnostic response buffer is not empty yet)
Bits 2..7: Reserved

5..7 reserved Reserved

4.4.28 0xA5 LIN
Diagnostics –

Get State

Firmware Commands

 smartCAR – User Manual 4-81

Use this command to modify certain diagnostic timing parameters for
the multisession channel defined by Channel.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Modify Schedule Delay
(relevant for TxMethod = 2, 3, 4
 of the 0xA0 LIN Diagnostics – Configuration command)
1: Modify Sending Timeout
(usually the Sending Timeout is 1000 ms)

2, 3 reserved Reserved

In addition, the following parameters are necessary for Mode = 0:

Byte Indication Description

4..7 MasterRequest Schedule delay for a master request in multiples of 25 ns

8..11 SlaveResponse Schedule delay for a slave response in multiples of 25 ns

In addition, the following parameters are necessary for Mode = 1:

Byte Indication Description

4, 5 TxTimeout Sending timeout in milliseconds

6, 7 reserved Reserved

4.4.29 0xA8 LIN
Diagnostics –

Change Timing

Firmware Commands

4-82 smartCAR – User Manual

This command is used to control the LIN Diagnostic Protocol. The
command is subdivided into several sub-commands distinguishable by
the Mode parameter.
The command and response structure for all sub-commands is the
same for all bytes up to Byte 3, while varieties occur starting with
Byte 4 (if more than four bytes exist).

Command and Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Changing the behavior

2, 3 reserved Reserved

The following Command parameters are only valid for Mode = 0:

Byte Indication Description

4..7 Flags In normal cases, ALL bits are 0
Bit 0: Disable21Handling (the negative response BusyRepeatRequest is
not handled)
Bit 1: Disable23Handling (the negative response RoutineNotComplete is
not handled)
Bit 2: Disable78Handling (the negative response
RequestCorrectlyReceived_ResponsePending is not handled)
Bit 3: Treat21As78Handling (the negative response BusyRepeatRequest
is handled as negative response
RequestCorrectlyReceived_ResponsePending)
Bits 4..31: Reserved

8..11 reserved Reserved

The following Response parameters are only valid for Mode = 0:

Byte Indication Description

4..7 reserved Reserved

4.4.30 0xA9 LIN
Diagnostics –

Protocol Control

Firmware Commands

 smartCAR – User Manual 4-83

This command is to query small LIN monitor buffer entries.
The command does not have any command bytes.

Response:
Byte Indication Description

0..3 NumberOfItems Number of monitor buffer entries

4.. Items Monitor buffer entries (for the structure see below)

A small LIN monitor buffer item without additional time stamps
consists of the following 20 Bytes:

Byte Indication Description

0 Flags Bit 0: Identifier parity error
Bit 1: Checksum error
Bit 2: Inconsistent SyncByte
Bit 3: Bit error
Bit 4: Event (see IdCode)
Bit 5: WakeUp
Bit 6: Sent LIN Frame response (TX)
Bit 7: Buffer overflow

1 Length Data length including checksum (0..9)

2 IdCode Generally the Identifier byte (consisting of identifier + parity bits);
BUT,
If Bit 4 of Flags is set, IdCode specifies the Event:
IdCode = 0 - rising flank at the trigger input,
IdCode = 1 - falling flank at the trigger input

3..11 Data Data bytes and checksum

12..15 StartTime Start time stamp as multiples of 400 ns

16..19 BitTimeX8 Bit time measured over eight bit times as multiples of 25 ns

Data contains the data bytes and the checksum following immediately
to the last data byte.
Length = 3 indicates two data bytes (Data[0] and Data[1]) and one
checksum byte (Data[2]).

4.4.31 0xF2 LIN
Monitor – Get

Small Buffer Items

Firmware Commands

4-84 smartCAR – User Manual

4.5 K-Line Commands
The K-Line commands for your GOEPEL hardware are described in
this chapter.

For general information valid for all firmware commands refer to the
General Firmware Notes section in this User Manual.

Optional Functionalities
For each K-Line interface there are at most the following Optional
Functionalities:

♦ Diagnostics KWP2000
♦ Diagnostics KWP1281
♦ Diagnostics ISO-9141-Ford

It is possible to select several Functionalities
After a power-on or software reset, available Optional Functionalities
have to be enabled by 0x03 Enable Functionalities.

Then the following firmware command should be executed:

♦ 0x12 KLine Init Interface

Initial state:
After a power-on or software reset, all K-Line interfaces are in an
inactive state (HIGH level).

The term Initialization used in this K-Line command description
means the following:
The tester sends an initialization pattern to establish communication.

Firmware Commands

 smartCAR – User Manual 4-85

The protocol driver is based on the following documents:

KWP2000
ISO 14230-2:1999 Keyword Protocol 2000 - Part 2: Data link layer
ISO 14230-3:1999 Keyword Protocol 2000 - Part 3: Application layer

KWP1281
Robert Bosch GmbH: Funktionsbeschreibung der Diagnose VW/Audi
(Y 265 K15 383 Ausgabe 04)

ISO-9141-Ford
Ford Automotive Operations: Global Diagnostic Specification: Part One
(DS-3L5T-1A294-AA)

Protocol-specific designations and abbreviations used in this
description are taken from these documents and marked by bold
and I talic characters.

If parameters are marked as “reserved”, the contents of this field will
be ignored. Nevertheless, the parameter must be transferred (for
compatibility among other reasons). In practical operation, these
values are to be initialized by 0.
Generally, the principle of the permanent change between request and
response applies for the communication on the K-Line. That means
that each request of the tester (here, K-Line protocol driver) causes a
response of the control unit. If these responses are not used for
controlling the protocol, they will be passed on to the host interface.
Protocol-specific exceptions regarding this request-response-change
are intercepted by the protocol driver. That means that the principle of
the “request-response-game” always applies for running K-Line
specific communication via the protocol driver!

Error Behavior:
If critical errors, which stop the communication for example, are
detected during processing commands, the protocol driver will be set
into a “clean” initial status.
In this case, an error number is set internally, which can be inquired
for example by the 0xA5 KLine Diagnostics – Get State command.

Firmware Commands

4-86 smartCAR – User Manual

This command resets the selected K-Line interface without software
reset to the initial state. Additionally, further configuration possibilities
are offered.
Interface selection is made by the TargetAddress and TargetPort
parameters in the header of the command.
The command bytes are optional. If there are no command bytes, the
firmware runs with 0 for the optional command bytes.

Command:
Byte Indication Description

0..2 reserved Reserved

3 BlinkMode 0: Flickering of the LEDs deactivated (default)
1: Flickering of the LEDs activated

4.5.1 0x12 KLine
Init Interface

Firmware Commands

 smartCAR – User Manual 4-87

Configure the K-Line diagnostic protocol for the multisession channel
defined by Channel with this command.
The command with Type = 0 is also used to deactivate the complete
diagnostics.

This firmware command can only be used in the case the diagnostic
protocol to be configured was enabled before by 0x03 Enable
Functionalities.

All settings required for a diagnostic structure and flow are preset by
this command. The settings made remain active till new settings will
be made explicitly.
This command has a total length of 84 bytes. The data structure of
this command is identical for all protocols. The interpretation of the
individual fields varies according to the selected diagnostic protocol
and to the type of initialization.

Generally Valid Parameters:

Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Type Type of diagnostics:
0: No diagnostics
1: Diagnostics KWP2000
2: Diagnostics KWP1281
3: Diagnostics ISO-9141-Ford
(for the requires structures see next pages)

2, 3 reserved Reserved

4, 5 Flags Automatic sending of diagnostic responses to the host
Bit 0 = 0: deactivated
Bit 0 = 1: activated
Bits 1..4: reserved
Verifying the check sum (KWP2000 and ISO-9194-Ford)
Bit 5 = 0: deactivated
Bit 5 = 1: activated
Bits 6..15: reserved

6, 7 Reserved Reserved

If verifying the check sum is deactivated, the value of the check sum
field will be ignored; otherwise verifying will be carried out.
Invalid check sums lead to “invalid check sum” errors then.

4.5.2 0xA0 KLine
Diagnostics –
Configuration

Firmware Commands

4-88 smartCAR – User Manual

Parameterization of Keyword Protocol 2000 (KWP2000):

Byte Indication Description

8, 9 SourceAddress Address of the tester to be used during the diagnostics,
e.g. 0xF1

10, 11 TargetAddress Address of the control unit to be used during the diagnostics

12, 13 P1min minimum interbyte time for responses of the ECU, e.g. 0 ms

14, 15 P1max maximum interbyte time for responses of the ECU, e.g. 20 ms

16, 17 P2min minimum time gap between the request of the tester and the
response of the ECU, or minimum time gap between two responses
of the ECU, e.g. 25 ms

18, 19 P2max maximum time gap between the request of the tester and the
response of the ECU, or maximum time gap between two responses
of the ECU, e.g. 50 ms

20, 21 P3min minimum time gap between the response of the ECU
and a new request of the tester, e.g. 55 ms

22, 23 P3max maximum time gap between the response of the ECU
and a new request of the tester, e.g. 2000 ms

24, 25 P4min minimum interbyte time for requests of the tester, e.g. 5 ms

26, 27 P4max maximum interbyte time for requests of the tester, e.g. 20 ms

28, 29 TesterPresent.-
SourceAddress

Address of the tester to be used during the Tester Present
service, e.g. same as SourceAddress

30, 31 TesterPresent.-
TargetAddress

Address of the control unit to be used during the Tester Present
service (e.g. same as TargetAddress)

32 TesterPresent.-
UseResponseRequired-
Parameter

The Tester Present Response Required parameter is
0: not used
1: used

33 TesterPresent.Response
RequiredParameter

Value of the Tester Present Response Required parameter
(if used), otherwise 0

34, 35 reserved Reserved

36, 37 InitType Type of initialization:
0: 5 Baud initialization
1: Fast initialization

38, 39 reserved Reserved

Firmware Commands

 smartCAR – User Manual 4-89

Parameterization KWP2000 for 5 Baud Initialization:

Byte Indication Description

40, 41 reserved Reserved

42, 43 TargetAddress 5 Baud address of the control unit

44, 45 W1min minimum time gap between the end of the address byte
and the start of the synchronization pattern, e.g. 60 ms

46, 47 W1max maximum time gap between the end of the address byte
and the start of the synchronization pattern, e.g. 300 ms

48, 49 W2min minimum time gap between the end of the synchronization pattern
and the start of Keybyte 1, e.g. 5 ms

50, 51 W2max maximum time gap between the end of the synchronization pattern
and the start of Keybyte 1, e.g. 20 ms

52, 53 W3min minimum time gap between Keybyte 1 and Keybyte 2,
e.g. 0 ms

54, 55 W3max maximum time gap between Keybyte 1 and Keybyte 2,
e.g. 20 ms

56, 57 W4min minimum time gap between Keybyte 2 of the ECU
and its inversion by the tester as well as minimum time gap between
the inverted Keybyte 2 of the tester and the inverted address byte
of the ECU, e.g. 25 ms

58, 59 W4max maximum time gap between Keybyte 2 of the ECU
and its inversion by the tester as well as maximum time gap
between the inverted Keybyte 2 of the tester and the inverted
address byte of the ECU, e.g. 50 ms

60, 61 W5min minimum time gap before the tester starts to send the address byte,
e.g. 300 ms

62, 63 W5max maximum time gap before the tester starts to send the address byte,
e.g. 300 ms

64..71 reserved Reserved

72, 73 Parity Parity for sending the address byte:
0: even
1: odd

74, 75 reserved Reserved

Firmware Commands

4-90 smartCAR – User Manual

Parameterization KWP2000 for Fast Initialization

Byte Indication Description

40, 41 SourceAddress Address of the tester to be used during the initialization,
e.g. 0xF1

42, 43 TargetAddress Address of the control unit to be used during the initialization

44, 45 W5min minimum time gap before the tester starts to send the address byte,
e.g. 300 ms

46, 47 W5max maximum time gap before the tester starts to send the address byte,
e.g. 300 ms

48, 49 TWuPmin minimum time period for the Wake-up pattern, e.g. 50 ms

50, 51 TWuPmax maximum time period for the Wake-up pattern, e.g. 50 ms

52, 53 TIniLmin minimum time period for the low phase of the Wake-up pattern,
e.g. 25 ms

54, 55 TIniLmax maximum time period for the low phase of the Wake-up pattern,
e.g. 25 ms

The following parameters are valid up to the end of the Initialization, i.e. via these parameters the
time response of the protocol can be separately set during the Initialization.

56, 57 P1min minimum interbyte time for responses of the ECU, e.g. 0 ms

58, 59 P1max maximum interbyte time for responses of the ECU, e.g. 20 ms

60, 61 P2min minimum time gap between the request of the tester
and the response of the ECU, e.g. 25 ms

62, 63 P2max maximum time gap between the request of the tester
and the response of the ECU, e.g. 50 ms

64, 65 P3min minimum time gap between the response of the ECU
and a new request of the tester, e.g. 55 ms

66, 67 P3max maximum time gap between the response of the ECU
and a new request of the tester, e.g. 2000 ms

68, 69 P4min minimum interbyte time for requests of the tester, e.g. 5 ms

70, 71 P4max maximum interbyte gap time for requests of the tester, e.g. 20 ms
72, 73 BaudRate BaudRate (usually 10400 Hz)
74, 75 reserved Reserved

Firmware Commands

 smartCAR – User Manual 4-91

Parameterization KWP2000 (Continuation)

76, 77 BusyRepeatRequest-
Max

Maximum number of Busy Repeat Request (0x21) responses to
a request
If the maximum number is exceeded, the response with the error
code will be given to the host – the request will not be repeated.
0x0000..0xFFFE: number
0xFFFF: unlimited

78, 79 RoutineNotComplete-
Max

Maximum number of Routine Not Complete (0x23) responses
to a request
If the maximum number is exceeded, the response with the error
code will be given to the host – the request will not be repeated.
0x0000..0xFFFE: number
0xFFFF: unlimited

80, 81 RequestCorrectly-
ReceivedResponse-
PendingMax

Maximum number of Request Correctly Received Response
Pending (0x78) responses to a request
If the maximum number is exceeded, the communication will be
aborted and a NO_RESPONSE error will be generated.
0x0000..0xFFFE: number
0xFFFF: unlimited

82, 83 reserved Reserved

Firmware Commands

4-92 smartCAR – User Manual

Parameterization of Keyword Protocol 1281 (KWP1281):

Byte Indication Description

8..11 reserved Reserved

12, 13 t7min minimum time gap between the bytes within one block, e.g. 1 ms
14, 15 t7max maximum time gap between the bytes within one block, e.g. 55 ms
16, 17 t8min minimum time for the repeated reception of the first byte of a block

(if the slave has not received the last byte of a block), e.g. 1 ms
18, 19 t8max maximum time for the repeated reception of the first byte of a block

(if the slave has not received the last byte of a block),e.g. 200 ms

20, 21 t9min minimum time gap between the end of a block
and the start of the next block, e.g. 1 ms

22, 23 t9max maximum time gap between the end of a block
and the start of the next block, e.g. 200 ms

24..35 reserved Reserved

36, 37 InitType Type of initialization
0: 5 Baud initialization

38..41 reserved Reserved

42, 43 TargetAddress 5 Baud address of the control unit

44, 45 t0min minimum idle line before the start of initialization, e.g. 60 ms

46, 47 t0max maximum idle line before the start of initialization, e.g. 300 ms

48, 49 t1min minimum time gap between the correct initialization
and the start of the synchronous byte, e.g. 80 ms

50, 51 t1max maximum time gap between the correct initialization
and the start of the synchronous byte, e.g. 210 ms

52, 53 t2min minimum time gap between the synchronous byte
and Keybyte 1, e.g. 5 ms

54, 55 t2max maximum time gap between the synchronous byte
and Keybyte 1, e.g. 20 ms

56, 57 t3min minimum time gap between Keybyte 1 and Keybyte 2,
e.g. 1 ms

58, 59 t3max maximum time gap between Keybyte 1 and Keybyte 2,
e.g. 20 ms

60, 61 t4min minimum time gap between Keybyte 2
and the complement of Keybyte 2, e.g. 25 ms

62, 63 t4max maximum time gap between Keybyte 2
and he complement of Keybyte 2, e.g. 50 ms

64, 65 t5min minimum time gap between the complement of Keybyte 2
and the repeated output of the synchronous byte
(if the complement of Keybyte 2 has not been received correctly
by the control unit), e.g. 240 ms

66, 67 t5max maximum time gap between the complement of Keybyte 2
and the repeated output of the synchronous byte
(if the complement of Keybyte 2 has not been received correctly
by the control unit), e.g. 1000 ms

68, 69 t6min minimum time gap between the complement of Keybyte 2
and the start of the ECU identification, e.g. 25 ms

70, 71 t6max maximum time gap between complement keybyte 2 and the start of
the ECU identification, e.g. 50 ms

Firmware Commands

 smartCAR – User Manual 4-93

Byte Indication Description

72, 73 Parity Parity when sending the address byte:
0: even
1: odd

74, 75 reserved Reserved

76, 77 MasterMaxBlockRetry maximum number of new attempts if errors occur during the
transmission of a block, e.g. 5
Input of the maximum number of repeated attempts to send a block,
if errors occur during the transmission of a block (protocol driver is
master).
(Error e.g. no or faulty echo from the slave, NO_ACK-1 from the
Slave)
0x0000..0xFFFE: Number
0xFFFF: unlimited

78, 79 SlaveMaxBlockRetry maximum number of new attempts if errors occur during the
reception of a block, e.g. 5
Input of the maximum number of repeated attempts to receive a
block, if errors occur during the reception of a block (protocol driver
is slave).
(Error e.g. timeout during the reception of the next byte within one
block of the master)
0x0000..0xFFFE: Number
0xFFFF: unlimited

80..83 reserved Reserved

Firmware Commands

4-94 smartCAR – User Manual

Parameterizing of ISO-9141-Ford:

Byte Indication Description

8, 9 SourceAddress Address of the tester to be used during the diagnostics,
e.g. 0xF1

10, 11 TargetAddress Address of the control unit to be used during the diagnostics

12, 13 ReceiveInterByte-
GapMin

Tester Reception: Interbyte Gap Time min
minimum interbyte time for responses of the ECU, e.g. 0 ms

14, 15 ReceiveInterByte-
GapMax

Tester Reception: Interbyte Gap Time max
maximum interbyte time for responses of the ECU, e.g. 22 ms

16, 17 ResponseInterMsg-
GapMin

ECU Response Follow ing A Tester Request & ECU Response
Follow ing Another ECU Message In A Sequence:
Intermessage Gap Time min
minimum time gap between the request of the tester
and the response of the ECU, or minimum time gap between two
responses of the ECU, e.g. 0 ms

18, 19 ResponseInterMsg-
GapMax

ECU Response Follow ing A Tester Request & ECU Response
Follow ing Another ECU Message In A Sequence:
Intermessage Gap Time max
maximum time gap between the request of the tester and the
response of the ECU, or maximum time gap between two responses
of the ECU, e.g. 50 ms

20, 21 RequestInterMsg-
GapMin

Tester Request Follow ing An ECU Response: Intermessage
Gap Time min
minimum time gap between the response of the ECU and a new
request of the tester, e.g. 55 ms

22, 23 RequestInterMsg-
GapMax

Tester Request Follow ing An ECU Response: Intermessage
Gap Time max
maximum time gap between the response of the ECU and a new
request of the tester, e.g. 2000 ms

24, 25 TransmitInterByte-
GapMin

Tester Transmissions: Interbyte Gap Time min
minimum interbyte time for requests of the tester, e.g. 6 ms

26, 27 TransmitInterByte-
GapMax

Tester Transmissions: Interbyte Gap Time max
maximum interbyte time for requests of the tester, e.g. 6 ms

28..35 reserved Reserved

36, 37 InitType Type of initialization:
2: Specific initialization not required

38..75 reserved Reserved

76, 77 BusyRepeatRequest-
Max

maximum number of Busy Repeat Request (0x21) responses to
a request
If the maximum number is exceeded, the response with the error
code will be given to the host – the request will not be repeated
0x0000..0xFFFE: Number
0xFFFF: unlimited

78..83 reserved Reserved

Firmware Commands

 smartCAR – User Manual 4-95

Notes to the Parameterization of the Tester Present Service:

The so called Tester Present service (called “interchange of
acknowledge blocks” for KWP1281) is used to maintain the
communication. That means that if requests of the host are not
received by the protocol driver (tester) during a defined period of
time, this one must prevent the communication from being cut (ECU
changes into the timeout) by transmitting specific messages.
The maximum time gap between the response of the ECU and a new
request of the tester is the decisive parameter here
(KWP2000: P3max,
KWP1281: t9max,
ISO-9141-Ford: RequestInterMsgGapMax).
The relevant message is always generated by the protocol driver
shortly before the time gap preset by the host will end.

Addressing modes:
physical: Communication with an individual ECU
(point-to-point-connection, Unicast)
functional: Communication with a group of ECUs
(point-to-multipoint-connection, Broadcast)

Firmware Commands

4-96 smartCAR – User Manual

This command starts a K-Line diagnostic session for the multisession
channel defined by Channel. Additionally, the diagnostic connection is
established.
Before this command can be executed, the 0xA0 KLine
Diagnostics – Configuration command must be carried out.
The command is the precondition for sending a request (0xA2 KLine
Diagnostics – Send Request).
The diagnostics is maintained till it will be explicitly stopped by means
of 0xA4 KLine Diagnostics – Stop Session.
After the successful diagnostic setup (initialization) the Tester
Present service (ACK block interchange for KWP1281) will become
active as soon as the idle timeout is exceeded on the K-Line (that
means that no request was received from the tester after a defined
time gap (before the end of the maximum interframe or interblock
time).

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2, 3 Length Request length
(At the present time, only Length = 0 is supported, the
corresponding start service is transmitted according to the diagnostic
type)

4..
(3+Length)

Request Request, consisting of SID (service identifier) and data

The 0xA1 KLine Diagnostics –Start Session command for starting the
diagnostics (or for opening the communication) is identical for all K-
Line protocols at first sight on the part of the host. Within the K-Line
driver, however, specific actions matched to the individually active
protocol are released. All the protocols react differently within the
diverse opening variants.
Generally one can say: The K-Line protocol driver always delivers a
response to the 0xA1 KLine Diagnostics – Start Session command (either
automatically or via the 0xA3 KLine Diagnostics – Get Response
Buffer inquiry, depending on the response mode set)!
But depending on the protocol, the meaning of the response data
varies. The receiver (host) is responsible for the correct interpretation.

4.5.3 0xA1 KLine
Diagnostics –
Start Session

Firmware Commands

 smartCAR – User Manual 4-97

The following table shall make clear the processes within the protocol
driver running as the response to a 0xA1 KLine Diagnostics –Start
Session command.
Attention is to be paid to the fact that a real separation between the
diagnostic and transport protocols does not exist on the K-Line. To
simplify it one can say that “Start communication” on the K-Line is to
be considered identical to “Start diagnostics”.

KWP2000 (Fast initialization)

Description Response of K-Line driver

Here, StartCommunication is a normal” request (KWP2000 frame
with three bytes header, SID = 0x81 – StartCommunication”)
which will be transmitted at a certain baud rate on the K-Line after a
defined “idle” time and a specific Wake up Pattern (WuP). In case
of success, the control unit responds with a response frame (form of
the header depending on the ability of the control unit, SID = 0xC1,
two keybytes in the data division). Then, the communication is
considered to be opened, that means that the Tester Present
service becomes active if there are not any requests.

Data division of the
response frame with the two
keybytes received by the
ECU.
ATTENTION:
By keybyte 1 the control
unit gives information on its
abilities.

KWP2000 (slow initialization – 5 Baud)

Description Response of K-Line driver

After an idle time (bus rest) the particular “initialization address” is
transmitted at 5 Bauds. In case of success, the control unit puts out a
pattern which allows the tester (K-Line driver) to synchronize itself to
the baud rate of the control unit. Afterwards, the ECU sends two
keybytes. The tester on its part acknowledges the reception of the
keybytes by returning keybyte 2 inverted bit by bit to the ECU.
Finally, the ECU returns the “initialization address” inverted bit by bit.
Afterwards, communication is considered to be opened, that means
the interchange of Tester Present blocks if there are not any
requests. Attention: Now possibly varying address of the ECU.

The K-Line driver generates
a response identical to the
“KWP2000 with quick
stimulation” from the
Keybytes received within
the stimulation.
Thus, there are not any
differences (on the part of
the host) to the fast
initialization.

KWP1281 (slow initialization – 5 Baud)

Description Response of K-Line driver

Similar to KWP2000 slow stimulation, but instead of sending the bit-
by-bit inverted address, the control unit automatically starts putting
out its identification string according to the regulations following
KWP1281 protocol after having received the Keybyte 2
complement. This identification is possibly distributed among several
blocks.
Afterwards, the communication is considered to be opened, that
means the interchange of Acknow ledge blocks if there are not any
requests.

The K-Line driver transmits
the received ECU-ID as a
response to the host
interface.
ATTENTION: For KWP1281,
the keybytes do not give
any information on the ECU
(always identical).

ISO-9141-Ford

Description Response of K-Line driver

The tester (K-Line driver) generates and transmits a “normal” request
(Mode = 0x10 – Diagnostic Mode Entry) at 10400 Bauds and with
the preset address parameters on the K-Line. In case of success, the
control unit responds with a General Response block (Mode =
0x7F, Response Code = 0x00).
Then, the communication is considered to be opened, that means
that the Tester Present service becomes active, if there are not
any requests.

Data division of the
General Response block
transmitted by the ECU.

Firmware Commands

4-98 smartCAR – User Manual

This command is used to send a K-Line diagnostic request for the
multisession channel defined by Channel.
Prerequisite is the successful execution of the 0xA1 KLine
Diagnostics – Start Session command before, and the diagnostic
connection must NOT have been disconnected.
Depending on the setting (bit 0 in the Flags parameter for the
0xA0 KLine Diagnostics – Configuration command), the response to
this request is either returned automatically to the host or has to be
demanded by 0xA3 KLine Diagnostics – Get Response Buffer.
In the request, only the actual used data of the telegram to be
generated by the protocol driver is transmitted
(for KWP2000, ISO-9151-Ford: no header, no checksum – only
ServiceID (or MODE byte) and data,
for KWP1281: no block length, no block counter, no ETX block end
byte – only block title and data).

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2 Send 0 = No sending (only buffer filling)
1 = Sending

3 Concatenate 0 = Write from buffer beginning
1 = append

4 Segmentation Segmentation flag für segmentation on diagnostic level
0 = Request not segmented
1 = Request segmented

5 reserved Reserved

6, 7 Length Request length (1..(PARAM_SIZE – 8))

8..
(7+Length)

Request Request, consisting of SID (service identifier) and data

The Segmentation flag refers to the diagnostic protocol.
As a rule it must not be set by a diagnostic tester.
Within ONE 0xA2 Kline Diagnostics – Send Request command, a
maximum number of PARAM_SIZE – 8 Request bytes can be
transmitted.
It is necessary to execute this command several times in order to send
larger diagnostic requests (e.g. 1100 bytes) caused by the size of the
command (limited by MESSAGE_SIZE). In this case the Concatenate
and Send parameters must be set accordingly.

4.5.4 0xA2 KLine
Diagnostics –
Send Request

Firmware Commands

 smartCAR – User Manual 4-99

Example of the Segmentation of Host Requests
The following example shall demonstrate the segmentation of
commands sent to the driver.
It is assumed that a KWP2000 diagnostics was successfully opened.
“0x1A, 0x9B” – “Read control units” identification
(ReadECUIdentification Service)” is to be transmitted.

Variant 1) Monolithic command:
Point in time t1: Request (0xA2) telegram from the host
to the protocol driver

Command
header with
OpCode
= 0xA2

(u8)
0x00
Channel
= 0

(u8)
0x00
Mode
= 0

(u8)
0x01
Send
= 1

(u8)
0x00
Concatenate
= 0

(u8)
0x00
Segmentation
= 0

(u8)
0x00

(u16)
0x0002
Length
= 2

(u8)
0x1A

(u8)
0x9B

Point in time t2 (t2 = t1 + x): KWP2000 telegram is generated and
transmitted by the protocol driver

KWP2000 Header (u8)
0x1A

(u8)
0x9B

(u8)
KWP2000 Prüfsumme

Variant 2) Segmented command:
Point in time t1: Request (0xA2) telegram from the host
to the protocol driver

Command
header with
OpCode
= 0xA2

(u8)
0x00
Channel
= 0

(u8)
0x00
Mode
= 0

(u8)
0x00
Send
= 0

(u8)
0x00
Concatenate
= 0

(u8)
0x00
Segmentation
= 0

(u8)
0x00

(u16)
0x0001
Length
= 1

(u8)
0x1A

Point in time t2 (t2 = t1 + x): second Request (0xA2) telegram from
the host to the protocol driver

Commands-
Header mit
OpCode
= 0xA2

(u8)
0x00
Channel
= 0

(u8)
0x00
Mode
= 0

(u8)
0x01
Send
= 1

(u8)
0x01
Concatenate
= 1

(u8)
0x00
Segmentation
= 0

(u8)
0x00

(u16)
0x0001
Length
= 1

(u8)
0x9B

Point in time t3 (t3 = t2 + y): KWP2000 telegram is generated and
transmitted by the protocol driver

KWP2000 Header (u8)
0x1A

(u8)
0x9B

(u8)
KW2000 checksum

The Segmentation flag is not set in the example as it refers to a
diagnostic protocol.

Firmware Commands

4-100 smartCAR – User Manual

The data interchange via the K-Line and the communication between
the host and the protocol driver are based on the request-response-
principle. That means each request causes one (!) response.
Within the different protocols exceptions to this principle do exist
sometimes. These deviations are intercepted by the protocol driver by
means of different mechanisms. In case of success, a request of the
host does always result in a response given by the driver.
If a response of the protocol driver does not arrive at the host within
the preset time gap, the state of the driver can (should) be checked
via the 0xA5 KLine Diagnostics – Get State command.
In the following, this situation is briefly demonstrated with the help of
a specific example:
An ECU according to KWP1281 gives a segmented identification string
response to the Read control unit identification (BT = 0x00)
request sent by the tester. That means, the response of the ECU (the
identification string) is distributed among several response blocks.
According to KWP1281, each of these response blocks must be
acknowledged by an Acknow ledge block, if it was received by the
tester (driver).
The driver identifies the end of the control unit response, if it receives
an Acknow ledge block from the ECU as a direct response to such
an Acknow ledge block sent on its part. On the basis of the
received segments the protocol driver generates the response for the
host now. In this case, the Acknow ledge block is only used to
control the sequence of the protocol. It is not included in the response
of the driver sent to the host!
The Delete error memory (BT = 0x05) command is used as an
example to prove the opposite. The ECU directly reports the successful
execution of this command by an Acknow ledge block (no further
responses!) Now, this response is not used to control the sequence of
the protocol but to acknowledge the execution of a command. In this
case, the Acknow ledge block is passed on to the host as a
response by the driver.

Firmware Commands

 smartCAR – User Manual 4-101

Query the K-Line diagnostic response buffer for the multisession
channel defined by Channel with this command
By means of the command, the response to a previous diagnostic
request (0xA2 KLine Diagnostics – Send Request) is collected.
The deactivation of the automatic transmission of diagnostic
responses (bit 0 in the Flags parameter for the 0xA0 KLine
Diagnostics – Configuration command is set to 0) is the
precondition for executing this command.
The command is also used to query both the response to 0xA1 KLine
Diagnostics – Start Session as well as the response to 0xA4 KLine
Diagnostics – Stop Session (not for KWP1281!).

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1..3 reserved Reserved

The response returned by the protocol driver only contains the user
data division of the corresponding response (with ServiceID or
BlockTitle, without header, check fields etc.) within the user data
field. The response may possibly be segmented (i.e. distributed
among several command telegrams).

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 LastErrorCode Error code (0 = no error)

2 Flags Bit 0 = 0: No segmentation on diagnostic level
Bit 0 = 1: Segmentation (segmentation on diagnostic level)
Bit 1 = 0: Idle
Bit 1 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 2 = 0: Invalid (this buffer item is invalid)
Bit 2 = 1: Valid (this buffer item is valid)
Bit 3 = 0: The diagnostic response buffer is empty
Bit 3 = 1: BufferNotEmpty
(the diagnostic response buffer is not empty yet)
Bits 4..7: Reserved

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4, 5 Length Number of response bytes (0..(PARAM_SIZE – 8))

6, 7 RemainingLength Number of remaining response bytes

8..
(7+Length)

Response Response, consisting of SID (service identifier) and data

If a diagnostic response does not fit into a single response, the host
has to call this command several times to fetch the remaining
responses. The last of these responses contains the value “0” in the
RemainingLength parameter.
In addition, the buffer should be read out as long as the Segmentation
bit, the Busy bit or the BufferNotEmpty bit of Flags are set.

4.5.5 0xA3 KLine
Diagnostics – Get
Response Buffer

Firmware Commands

4-102 smartCAR – User Manual

Interpretation of the Response:
The contents of the responses which can be got by this command
after
0xA1 KLine Diagnostics – Start Session,
0xA2 KLine Diagnostics – Send Request and
0xA4 KLine Diagnostic – Stop Session
can have different meanings depending on the protocol used.
The K-Line protocol driver is NOT responsible for the interpretation
of these responses!

This command stops a running K-Line diagnostic session for the
multisession channel defined by Channel. Additionally, the diagnostic
connection is released.
Further 0xA2 KLine Diagnostics – Send Request commands are not
possible till to the next 0xA1 KLine Diagnostics – Start Session
command.

The settings made by 0xA0 KLine Diagnostics – Configuration are
NOT reset by this command!

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 Mode 0: Physical addressing
1: Functional addressing
In addition: No response to the request is necessary if the most
significant bit is set (0x80)

2, 3 Length Request length
(At the present time, only Length = 0 is supported,
the corresponding stop service is transmitted according to the
diagnostic type)

4..
(3+Length)

Request Request, bestehend aus SID (Service-Identifier) und Daten

The 0xA4 KLine Diagnostics – Stop Session command for stopping the
diagnostics (or for stopping the communication) is identical for all K-
Line protocols at first sight on the part of the host.
Within the K-Line driver, however, specific actions matched to the
individually active protocol are released.

4.5.6 0xA4 KLine
Diagnostics –
Stop Session

Firmware Commands

 smartCAR – User Manual 4-103

All protocols react in a different way. Generally one can say:
The K-Line protocol driver always delivers a response to the
0xA4 KLine Diagnostics – Stop Session command (either automatically or
via the 0xA3 KLine Diagnostics – Get Response Buffer query,
depending on the response mode set)!
But depending on the protocol, the meaning of the response data
varies. The receiver (host) is responsible for the correct interpretation.
The following table shall make clear the processes within the protocol
driver running as the response to a 0xA4 KLine Diagnostics – Stop
Session command.
Attention is to be paid to the fact that a real separation between the
diagnostic and the transport protocols does not exist on the K-Line.
To simplify it one can say that “Stop communication” on the K-Line is
to be considered identical to “Stop diagnostics”.

KWP2000

Description Response of the K-Line driver

The K-Line driver generates and sends a Stop
Communication request (KWP2000 frame,
SID = 0x82). The ECU responds with a Stop
Communication positive (or negative)
response (KWP2000 frame, SID = 0xC2 or SID
= 0x7F, 0x82, 0xXX). After a Positive Response
communication will be finished.

Data division of the Stop Communication
response of the ECU

KWP1281

Description Response of the K-Line driver

The K-Line driver generates and sends a
DiagnosticEnd block (KWP1281 block,
BT = 0x06). In case of success, the control unit
responds with an Acknow ledge block (BT =
0x09) before the end of the communication or it
stops the communication immediately without
any acknowledgement.

Data division (BT) of the Acknow ledge block
(always, even if there is no block of the ECU)

ISO-9141-Ford

Description Response of the K-Line driver

The K-Line driver generates and sends a
Request Operational State Entry block
(Mode = 0x20). The ECU responds with a
General Response frame (Mode = 0x7F, in
case of success Response Code = 0x00).
In case of success, the communication will be
terminated then.

Data division of the General Response block

Firmware Commands

4-104 smartCAR – User Manual

Query the K-Line diagnostic state for the multisession channel defined
by Channel with this command.
Additionally, the firmware internal LastErrorCode can be reset.
The value of the LastErrorCode in the Response corresponds to the
value of the firmware internal LastErrorCode before its resetting.
Generally the firmware internal LastErrorCode is reset automatically
without calling this 0xA5 KLine Diagnostics – Get State command by
starting a diagnostic session by 0xA1 KLine Diagnostics – Start
Session or by stop of a diagnostic session with 0xA4 KLine
Diagnostics – Stop Session and Length ≠ 0.

Command:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 ResetLastError 0 = Does not reset LastErrorCode
1 = Resets LastErrorCode

2, 3 reserved Reserved

Response:
Byte Indication Description

0 Channel Multisession channel (starting with 0)

1 LastErrorCode Error code (0 = no error)

2 DiagType Type of diagnostics:
0: No diagnostics
1: Diagnostics KWP2000
2: Diagnostics KWP1281
3: Diagnostics ISO-9141-Ford

3 State State of diagnostics:
0: Not initialized
1: No connection
2: Connection is being established
3: Connection was established
4: Connection is released

4 Flags Bit 0 = 0: Idle
Bit 0 = 1: Busy
(a request has not been responded yet or successfully sent)
Bit 1 = 0: The diagnostic response buffer is empty
Bit 1 = 1: RxBufferNotEmpty (the buffer is not empty yet)
Bits 2..7: Reserved

5..7 reserved Reserved

4.5.7 0xA5 KLine
Diagnostics –

Get State

Index

 smartCAR – User Manual i

A

Acknowledge 4-19
ArbitrationTime 4-62

B

Baudrate Detection 4-63
Bootloader 4-15
BreakDelimiterTime 4-62
BreakTime 4-62
Broadcast data

Inquiry 4-37
Sending 4-36
Stop 4-37

C

CAN
Functionalities 4-17, 4-18

CAN baudrate 4-20
CAN Commands 4-18
CAN Diagnostics

Asynchronous buffer inquiry
 4-51

Command sequence 4-45
Configuration 4-39
Get state 4-50
GMLAN 4-41
J1939 4-43
KWP2000 on ISOTP...... 4-40
KWP2000 on TP1.6 4-40
KWP2000 on TP2.0 4-40
Normal buffer inquiry ... 4-48
Send request 4-47
Start session 4-46
Stop session 4-49
UDS on ISOTP 4-42
UUDT buffer inquiry 4-52

CAN interface reset 4-19
CAN Intermission 4-19
CAN Message

Change data 4-28
Change message mode 4-27
Change prepare mode .. 4-27
Definition 4-26
Delete one 4-29
Start 4-28
Stop 4-28

CAN Monitor
Activation 4-30
Buffer items inquiry 4-55
List item inquiry 4-57
Receiving filter 4-29

CAN node 4-22
Baud rate - Get 4-25
Baud rate - Set 4-24
get flag by id 4-23
Set flag by id 4-23

CAN TP
Control 4-38

CAN TX FIFO
Reset 4-53
Send one message 4-53
Send several messages . 4-54
State inquiry 4-54

Checksum
LIN 4-63

Command acknowledgment 4-5
Command structure 4-4
Commands

CAN 4-18
K-Line 4-84
LIN 4-58

Connectors
smartCAR 2-6

Constants.......................... 4-4
Controller 4-2
Controller reset 4-16

D

Data types 4-2
Diagnostics

CAN 4-39
KLine 4-87
LIN ... 4-73, 4-76, 4-81, 4-82

F

Firmware 4-2, 4-3, 4-15
General notes 4-1
Version 4-16

Functionalities
CAN 4-17, 4-18
K-Line 4-17, 4-84

Functionality enabling 4-16

G

G-API 3-1
GMLAN 4-34

H

Header 4-3
Highspeed 4-20

Index

ii smartCAR – User Manual

I

Initial state
CAN 4-18
K-Line 4-84
LIN 4-59

Interfaces 4-2
ISOTP 4-33

K

K-Line
Functionalities 4-17, 4-84

K-Line Commands 4-84
KLine Diagnostics

Configuration 4-87
ISO-9141-Ford............. 4-94
KWP1281 4-92
KWP2000 4-88
Response buffer inquiry

 4-101
Send request 4-98
Start session................ 4-96
State inquiry 4-104
Stop session 4-102

K-Line interface reset 4-86

L

LIN
Properties setting 4-62

LIN checksum 4-63
LIN cluster 4-59
LIN Commands 4-58
LIN Diagnostics

Change timing 4-81
Command sequence 4-76
Configuration 4-73
Get buffer 4-78
Get state 4-80
Protocol control 4-82
RAW-Mode 4-74
Send request 4-77
Start session................ 4-77
Stop session 4-79

LIN frame 4-60
LIN Frame response

Definition 4-67
Delete 4-68

LIN Frame response table
Filling 4-65
Remove entries 4-67

LIN interface reset 4-61
LIN message 4-60
LIN Monitor

Activation 4-70
Receiving filter 4-69
Small buffer items inquiry

 4-83

LIN relays
Direct setting 4-72
Resetting 4-71
Setting 4-71
State inquiry 4-72

LIN schedule table
Clear 4-66
Filling 4-64
Processing 4-66

LIN slave controller state . 4-66
LIN stop sending 4-66
LIN wakeup

Request 4-65
Lowspeed 4-20

M

Monitor filter
CAN 4-29
LIN 4-69

Multisession channel
Release 4-36
Request 4-36

P

PARAM_SIZE 4-4

R

RAM 4-15
Response structure 4-4

S

Software reset 4-15

T

Tester Present 4-40, 4-41,
 4-42, 4-43, 4-74, 4-76, 4-95

TP1.6 4-32
TP2.0 4-32
Transceiver mode 4-20
Transport protocol 4-31

GMLAN 4-34
ISOTP 4-33
J1939 4-35
TP1.6 4-32
TP2.0 4-32

Index

 smartCAR – User Manual iii

U

USB Command structure .. 3-11
USB Commands 3-11
USB Response structure ... 3-11

W

Wakeup Delimiter Time 4-69
Windows device driver 3-2

	1 Installation
	1.1 Hardware Installation
	1.2 Driver Installation

	2 Hardware
	2.1 Definition
	2.2 Technical Specification
	2.2.1 Dimensions
	2.2.2 smartCAR Characteristics

	2.3 Construction
	2.3.1 General
	2.3.2 Addressing
	2.3.3 Change of Transceivers
	2.3.4 Communication Interfaces
	2.3.5 Connector Assignments

	2.4 Delivery Notes

	3 Control Software
	3.1 Programming via G-API
	3.2 Programming via DLL Functions
	3.2.1 Windows Device Driver
	3.2.1.1 Driver_Info
	3.2.1.2 DLL_Info
	3.2.1.3 Write_FIFO
	3.2.1.4 Read_FIFO
	3.2.1.5 Read_ FIFO_Timeout
	3.2.1.6 Write_ COMMAND
	3.2.1.7 Read_ COMMAND

	3.3 Programming with LabVIEW
	3.3.1 LabVIEW via G-API
	3.3.2 LLB using the Windows Device Driver

	3.4 Further GOEPEL Software
	3.5 USB Controller Control Commands
	3.5.1 USB Command Structure
	3.5.2 USB Response Structure
	3.5.3 USB Commands

	4 Firmware Commands
	4.1 General Firmware Notes
	4.1.1 Interfaces
	4.1.2 Data Types
	4.1.3 Header
	4.1.4 Constants
	4.1.5 Command Structure
	4.1.6 Response Structure
	4.1.7 Command Acknowledgment
	4.1.8 Command Examples
	4.1.9 Bootloader
	4.1.10 Command Sequence

	4.2 General Firmware Commands
	4.2.1 0x03 Enable Functionalities
	4.2.2 0x10 Software Reset
	4.2.3 0xF0 Get Firmware Version

	4.3 CAN Commands
	4.3.1 0x12 CAN Init Interface
	4.3.2 0x14 CAN Set Bus Baudrate
	4.3.3 0x1E CAN Node
	4.3.3.1 SET_FLAG_BY_ID
	4.3.3.2 GET_FLAG_BY_ID
	4.3.3.3 BAUD_RATE SET
	4.3.3.4 BAUD_RATE GET

	4.3.4 0x22 CAN Message Definition
	4.3.5 0x23 CAN Change Prepare Mode
	4.3.6 0x24 CAN Change Message Mode
	4.3.7 0x25 CAN Change Message Data
	4.3.8 0x28 CAN Start Prepared Messages
	4.3.9 0x29 CAN Stop Prepared Messages
	4.3.10 0x2A CAN Delete one Message
	4.3.11 0x52 CAN Monitor – Receiving Filter Definition
	4.3.12 0x54 CAN Monitor – Activation/ Deactivation
	4.3.13 0x81 CAN TP – Configuration
	4.3.14 0x82 CAN TP – Multi session Channel Request
	4.3.15 0x83 CAN TP – Multi session Channel Release
	4.3.16 0x8A CAN TP – Send Broadcast Data
	4.3.17 0x8B CAN TP – Get Broadcast Data
	4.3.18 0x8C CAN TP – Stop Broadcast Retriggering
	4.3.19 0x8D CAN TP Control
	4.3.20 0xA0 CAN Diagnostics – Configuration
	4.3.21 0xA1 CAN Diagnostics – Start Session
	4.3.22 0xA2 CAN Diagnostics – Send Request
	4.3.23 0xA3 CAN Diagnostics – Get Normal Response Buffer
	4.3.24 0xA4 CAN Diagnostics – Stop Session
	4.3.25 0xA5 CAN Diagnostics – Get State
	4.3.26 0xA6 CAN Diagnostics – Get Asynchronous Response Buffer
	4.3.27 0xA7 CAN Diagnostics – Get UUDT Response Buffer
	4.3.28 0xB0 CAN TX-FIFO – Reset
	4.3.29 0xB1 CAN TX-FIFO – Send one Message
	4.3.30 0xB2 CAN TX-FIFO – Send several Messages
	4.3.31 0xB3 CAN TX-FIFO – Get State
	4.3.32 0xF1 CAN Monitor – Get Buffer Items
	4.3.33 0xF2 CAN Monitor – Get List Item

	4.4 LIN Commands
	4.4.1 0x12 LIN Init Interface
	4.4.2 0x14 LIN Set Interface Properties
	4.4.3 0x15 LIN Set Checksum Model
	4.4.4 0x22 LIN Fill Schedule Table
	4.4.5 0x23 LIN Fill Frame Response Table
	4.4.6 0x24 LIN Send WakeUp Request
	4.4.7 0x25 LIN Set Slave Task State
	4.4.8 0x28 LIN Master – Start Transmitting
	4.4.9 0x29 LIN Master – Stop Transmitting
	4.4.10 0x2A LIN Clear Schedule Table
	4.4.11 0x2B LIN Remove Frame Response Table Items
	4.4.12 0x30 LIN Frame Response Definition
	4.4.13 0x31 LIN Delete Frame Response
	4.4.14 0x40 LIN Set Bus BaudRate
	4.4.15 0x46 LIN Set Break Detection Threshold
	4.4.16 0x47 LIN Set WakeUp DelimiterTime
	4.4.17 0x52 LIN Monitor – Receiving Filter Definition
	4.4.18 0x54 LIN Monitor – Activation/ Deactivation
	4.4.19 0x81 LIN Relays – Setting
	4.4.20 0x82 LIN Relays – Resetting
	4.4.21 0x83 LIN Relays – Direct Setting
	4.4.22 0x84 LIN Relays – Get State
	4.4.23 0xA0 LIN Diagnostics – Configuration
	4.4.24 0xA1 LIN Diagnostics – Start Session
	4.4.25 0xA2 LIN Diagnostics – Send Request
	4.4.26 0xA3 LIN Diagnostics – Get ResponseBuffer
	4.4.27 0xA4 LIN Diagnostics – Stop Session
	4.4.28 0xA5 LIN Diagnostics – Get State
	4.4.29 0xA8 LIN Diagnostics – Change Timing
	4.4.30 0xA9 LIN Diagnostics – Protocol Control
	4.4.31 0xF2 LIN Monitor – Get Small Buffer Items

	4.5 K-Line Commands
	4.5.1 0x12 KLine Init Interface
	4.5.2 0xA0 KLine Diagnostics – Configuration
	4.5.3 0xA1 KLine Diagnostics – Start Session
	4.5.4 0xA2 KLine Diagnostics – Send Request
	4.5.5 0xA3 KLine Diagnostics – Get Response Buffer
	4.5.6 0xA4 KLine Diagnostics – Stop Session
	4.5.7 0xA5 KLine Diagnostics – Get State

	Unbenannt

