

PXI 3164 Relaisboard

Nutzerhandbuch (Originaldokumentation) Dokumentversion 1.1

GÖPEL electronic **GmbH**

© 2014 GÖPEL electronic GmbH. Alle Rechte vorbehalten.

Die in diesem Handbuch beschriebene Software sowie das Handbuch selbst dürfen nur in Übereinstimmung mit den Lizenzbedingungen verwendet oder kopiert werden. Zu Sicherungszwecken darf der Käufer eine Kopie der Software anfertigen.

Der Inhalt des Handbuchs dient ausschließlich der Information, ist nicht als Verpflichtung der GÖPEL electronic GmbH anzusehen und kann ohne Vorankündigung verändert werden. Hard- und Software unterliegen ebenso möglichen Veränderungen im Sinne des technischen Fortschritts.

Die GÖPEL electronic GmbH übernimmt keinerlei Gewähr oder Garantie für Genauigkeit und Richtigkeit der Angaben in diesem Handbuch.

Ohne vorherige schriftliche Genehmigung der GÖPEL electronic GmbH darf kein Teil dieser Dokumentation in irgendeiner Art und Weise übertragen, vervielfältigt, in Datenbanken gespeichert oder in andere Sprachen übersetzt werden (es sei denn, dies ist durch die Lizenzbedingungen ausdrücklich erlaubt).

Die GÖPEL electronic GmbH haftet weder für unmittelbare Schäden noch für Folgeschäden aus der Anwendung ihrer Produkte.

Gedruckt: 11.08.2014

Alle in diesem Handbuch verwendeten Produkt- und Firmennamen sind Markennamen oder eingetragene Markennamen ihres jeweiligen Eigentümers.

Stand: August 2014

1	INSTALI	ATION UND GEWÄHRLEISTUNG	1-1
	1.2 HARE 1.3 TREE	ERUMFANG DWAREINSTALLATION BERINSTALLATION ÄHRLEISTUNG	1-1
2	PXI 316	4 HARDWARE	2-1
	2.2 TECH 2.2.1 2.2.2 2.3 AUFB	EMEINE KENNDATEN INISCHE DATEN Abmessungen Elektrische Kennwerte AU CHLUSSBELEGUNG PXI 3164	2-2 2-2 2-3
_		EDOOETIMA DE	
3	ANSTEU	ERSOFTWARE	3-1
3	3.1 PROC 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6	GRAMMIEREN MIT LABVIEW VI GPxi3164 GetDriverInfo VI GPxi3164 SetRelayConf VI GPxi3164 GetRelayConfMask VI GPxi3164 UpdateRelay VI GPxi3164 UpdateRelay VI GPxi3164 DLL Version GRAMMIEREN ÜBER DLL-FUNKTIONEN GPxi3164 GetDriverInfo GPxi3164 SetRelayConf GPxi3164 GetRelayConfMask GPxi3164 GetRelayConf GPxi3164 UpdateRelay	3-1 3-2 3-5 3-7 3-10 3-11 3-12 3-13 3-15

1 Installation und Gewährleistung

1.1 Lieferumfang

Zu Ihrem GÖPEL electronic PXI 3164 Board gehört folgender Lieferumfang:

- 1x Relaisboard mit 64 Relais 100VAC/ 1A
- 1X CD mit Treibern, Software und Handbuch

1.2 Hardwareinstallation

Stellen Sie bitte unbedingt sicher, dass <u>alle</u> Hardware Installationsarbeiten im <u>ausgeschalteten</u> Zustand Ihres Systems erfolgen!

Öffnen Sie das *CompactPCI*^{IM} - oder PXI^{IM}-System entsprechend seinen Gegebenheiten und wählen Sie einen freien Steckplatz aus. Beim ausgewählten Steckplatz entfernen Sie das ggf. vorhandene Slotblech. Dazu werden die beiden Befestigungsschrauben gelöst, dann wird das Slotblech herausgenommen.

Fassen Sie das Board bei der Montage nur an den Rändern an. Berühren Sie niemals die Oberfläche oder Bauelemente, da sonst akute Zerstörungsgefahr durch elektrostatische Aufladung besteht.

In den so vorbereiteten Steckplatz führen Sie das Board vorsichtig ein. Mit dem an der Frontplatte befindlichen Hebel wird es das letzte Stück eingeschoben.

Nach dem ordnungsgemäßen Kontaktieren wird das Board mit den beiden Schrauben befestigt.

Danach sind die Arbeiten am System auszuführen, die dieses wieder betriebsbereit machen.

1.3 Treiberinstallation

Ihr PXI 3164 Board kann sowohl unter Windows $^{\rm @}$ NT als auch unter Windows $^{\rm @}$ 7/ 64 Bit betrieben werden.

Die erforderlichen Treiber finden Sie auf der mitgelieferten CD.

Zur Installation der GÖPEL electronic PXI-Treiber für Windows[®] NT führen Sie das Treiber-Setup *Install_GPxi3164.EXE* aus. Folgen Sie den gegebenen Anweisungen.

Durch die Plug-and-Play Fähigkeit von Windows® 7 wird für jede neu erkannte Hardwarekomponente automatisch eine Treiberinstallation über den Hardwareassistenten gestartet.

Mit der auf der beiliegenden CD enthaltenen *inf*-Datei aus dem Ordner *GPxi3164/ Win7_x64(Versionx.x)* kann der Hardwareassistent die Installation des Devicetreibers durchführen.

Nach Abschluss des Installationsprozesses schlägt Windows® einen Neustart vor. Für sicheren und zuverlässigen Betrieb wird dieser Schritt dringend empfohlen.

Wenn Sie eigene Software für die Boards erstellen wollen, benötigen Sie die Dateien für die anwenderspezifische Programmierung (*.DLL, *.LLB, *.H). Diese werden nicht automatisch übernommen und müssen deshalb manuell von der mitgelieferten CD in Ihr Entwicklungsverzeichnis kopiert werden.

Nach der Installation können Sie mit dem Windows® Geräte-Manager überprüfen, ob das Board ordnungsgemäß in das System eingebunden worden ist:

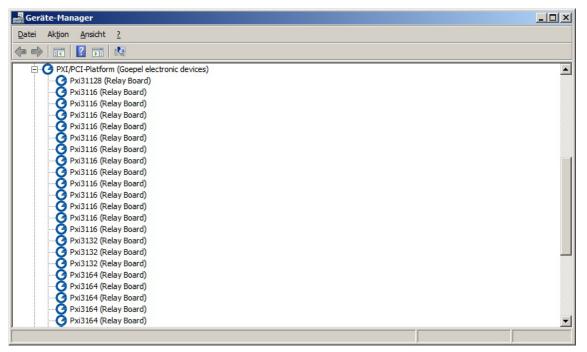


Abbildung 1-1: GÖPEL electronic Relaisboards im Windows® Gerätemanager

1.4 Gewährleistung

Bedingungen

Wir gewährleisten die Fehlerfreiheit des Relaisboards für einen Zeitraum von 24 Monaten ab Verkauf.

Die Gewährleistung besteht nicht bei Fehlern, die auf unsachgemäßen Eingriffen oder Änderungen oder auf sachwidrigem Gebrauch beruhen.

Kennzeichnung

Ferner bitten wir Sie, mögliche Gewährleistungsfälle als solche bekanntzugeben. Reparaturaufträge ohne Hinweis auf einen bestehenden Gewährleistungsfall werden in jedem Fall zunächst kostenpflichtig ausgeführt.

Sollte die Gewährleistungspflicht entfallen sein, reparieren wir Ihr Relaisboard selbstverständlich auch gemäß unseren allgemeinen Montage- und Servicebedingungen.

2 PXI 3164 Hardware

PXI 3164 ist ein Relaisboard der GÖPEL electronic GmbH. Dieses Board wurde für den PXI™-Bus (PCI eXtensions for Instrumention) entwickelt. Basis für diesen Bus ist der CompactPCI™ - Bus.

Es ist möglich, das Board in einem CompactPCI™ - oder einem PXI™ - System zu betreiben. Es hat keine Jumper und wird automatisch in das jeweilige Sytem eingebunden.

2.1 Allgemeine Kenndaten

Das Board PXI 3164 kann in der allgemeinen Mess- und Steuerungstechnik verwendet werden, um elektrische Signale potenzialfrei zu schalten.

Der Aufbau des Boards PXI 3164 ermöglicht verschiedene Konfigurationen einer Matrix. Der Anwender kann selbst bestimmen, wie seine Matrix mit dem PXI 3164 aufgebaut sein soll. Grundstruktur des Boards ist ein Block von 16 zu 1 Relais.

Als Relaistyp wird ein Schließer verwendet. Vier Blöcke dieser Struktur befinden sich auf dem Board. Es kann somit eine Matrix von

16 zu 4 oder

32 zu 2 oder

64 zu 1

konfiguriert werden.

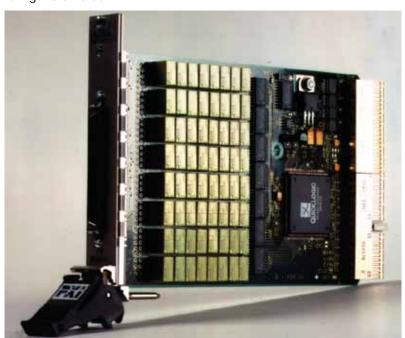


Abbildung 2-1: Relaisboard PXI 3164

2.2 Technische Daten

2.2.1 Abmes- (Länge x Breite):

sungen 160mm x 100mm

2.2.2 Elektrische Die folgende Tabelle zeigt die elektrischen Kennwerte: Kennwerte

Symbol	Kennwert	Min.	Тур.	Max.	Einheit	Bemerkung
I	Schaltstrom DC (Max.)	10*10 ⁻⁶		1,0	А	Ohmsche Last; 30V
Us	Schaltspannung DC	10mV		30	V	Ohmsche Last; 1A
Р	Schaltleistung DC			30	W	Ohmsche Last
R _{con}	Kontaktwiderstand zwischen CH_xL u. CH_xH	30	50	100	mW	
	Schaltspiele	10 ⁵				1A; 30V (DC)
t _{on}	Anzugszeit	15	10		ms	
t _{off}	Abfallzeit	10	8		ms	
MTBF	Ausfallrate des Boards	15*10 ⁴				

2.3 Aufbau

Das Relaisboard verfügt über 64 Relais, die als Schließer ausgeführt sind. Die Struktur der Relais ist in vier Blöcke mit je 16 Relais gegliedert. Diese Blöcke können über den Steckverbinder zu den verschiedenen Matrizen zusammengeschaltet werden. Die Anschlüsse der jeweiligen Relaiskontakte sind auf den Steckverbinder X1 geführt. Die folgende Abbildung zeigt eine schematische Darstellung der Relaisstruktur auf dem Board:

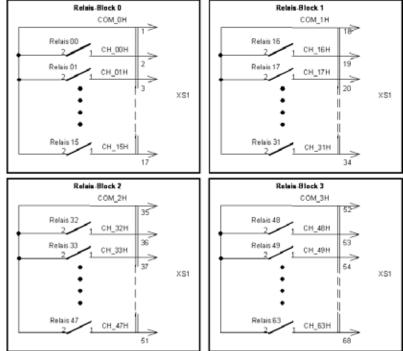


Abbildung 2-2: PXI 3164 - Struktur

2.4 Anschlussbelegung PXI 3164

Lfd. Nr.:	Anschluss XS1	Signalname	Bemerkung
1	1	COM_0	Common-Anschluss
			Block 0
2	2	CH_00	Relais 00
3	3	CH_01	Relais 01
4	4	CH_02	Relais 02
5	5	CH_03	Relais 03
6	6	CH_04	Relais 04
7	7	CH_05	Relais 05
8	8	CH_06	Relais 06
9	9	CH_07	Relais 07
10	10	CH_08	Relais 08
11	11	CH_09	Relais 09
12	12	CH_10	Relais 10
13	13	CH_11	Relais 11
4	14	CH_12	Relais 12
15	15	CH_13	Relais 13
16	16	CH_14	Relais 14
17	17	CH_15	Relais 15
18	18	COM_1	Common-Anschluss
			Block 1
19	19	CH_16	Relais 16
20	20	CH_17	Relais 17
21	21	CH_18	Relais 18
22	22	CH_19	Relais 19
23	23	CH_20	Relais 20
24	24	CH_21	Relais 21
25	25	CH_22	Relais 22
26	26	CH_23	Relais 23
27	27	CH_24	Relais 24
28	28	CH_25	Relais 25
29	29	CH_26	Relais 26
30	30	CH_27	Relais 27
31	31	CH_28	Relais 28
32	32	CH_29	Relais 29
33	33	CH_30	Relais 30
34	34	CH_31	Relais 31

Lfd. Nr.:	Anschluss XS1	Signalname	Bemerkung
35	35	COM_2	Common-Anschluss
			Block 2
36	36	CH_32	Relais 32
37	37	CH_33	Relais 33
38	38	CH_34	Relais 34
39	39	CH_35	Relais 35
40	40	CH_36	Relais 36
41	41	CH_37	Relais 37
42	42	CH_38	Relais 38
43	43	CH_39	Relais 39
44	44	CH_40	Relais 40
45	45	CH_41	Relais 41
46	46	CH_42	Relais 42
47	47	CH_43	Relais 43
48	48	CH_44	Relais 44
49	49	CH_45	Relais 45
50	50	CH_46	Relais 46
51	51	CH_47	Relais 47
52	52	COM_3	Common-Anschluss
		_	Block 3
53	53	CH_48	Relais 48
54	54	CH_49	Relais 49
55	55	CH_50	Relais 50
56	56	CH_51	Relais 51
57	57	CH_52	Relais 52
58	58	CH_53	Relais 53
59	59	CH_54	Relais 54
60	60	CH_55	Relais 55
61	61	CH_56	Relais 56
62	62	CH_57	Relais 57
63	63	CH_58	Relais 58
64	64	CH_59	Relais 59
65	65	CH_60	Relais 60
66	66	CH_61	Relais 61
67	67	CH_62	Relais 62
68	68	CH_63	Relais 63

Verwendeter Steckverbinder auf dem Board: Harting SCSI Stiftleiste 6001 068 5232

Steckverbinder für Anschlusskabel:

Harting SCSI Buchsenleiste 6003 068 5180 Harting SCSI Gehäuse 6003 068 0255

3 Ansteuersoftware

3.1 Programmieren mit LabVIEW

LLB unter Verwendung des Windows Device Treibers

Im Ordner *GPxi3164/WIN7_x64 (Version x.xx)* der mitgelieferten CD befindet sich die Datei *GPxi3164.llb* mit einer VI-Sammlung, mit deren Hilfe PXI 3164 Boards direkt unter LabVIEW angesprochen werden können. Dabei werden die Funktionen genutzt, die unter <u>Programmieren über DLL-Funktionen</u> beschrieben werden.

Wenn Sie diese VIs unter einer höheren Version von LabVIEW als geliefert benutzen möchten, sind sie mit der entsprechenden LabVIEW-Version zu konvertieren.

VIs unter Windows

Die für die Programmierung unter Verwendung des Windows Device Treibers nutzbaren VIs sind in den folgenden Abschnitten beschrieben:

- VI GPxi3164 GetDriverInfo
- VI GPxi3164 SetRelayConf
- VI GPxi3164 SetRelayConfMask
- VI GPxi3164 GetRelayConf
- VI GPxi3164 UpdateRelay
- VI GPxi3164 DLL Version

3.1.1 VI GPxi3164 GetDriverInfo

Beschreibung

Das VI GPxi3164_GetDriverInfo gibt Informationen über den Status des Hardware-Treibers zurück.

Parameter

Driver Info Status-Informationen des Treibers

RetValue 0 = Kein Fehler; negativer Wert = Fehler

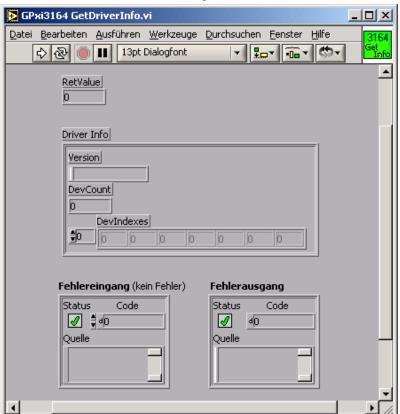


Abbildung 3-1: Frontpanel VI GPxi3164 GetDriverInfo

3.1.2 VI GPxi3164 SetRelayConf

Beschreibung

Das VI GPxi3164_SetRelayConf setzt die Sollkonfiguration der Relais 0..63 des mit Device indizierten PXI 3164 Boards.

Dazu überträgt das VI den 32 Bit Wert RelValL in die Sollkonfiguration der Relais 0..31 und den 32 Bit Wert RelValH in die Sollkonfiguration der Relais 32..63.

Bitbelegung in RelValL

Bitbelegung in RelValH

			1	1	Г
Bit 0	Relais 0	CH_00 von COM_0	Bit 0	Relais 32	CH_00 von COM_2
Bit 1	Relais 1	CH_01 von COM_0	Bit 1	Relais 33	CH_01 von COM_2
Bit 2	Relais 2	CH_02 von COM_0	Bit 2	Relais 34	CH_02 von COM_2
Bit 3	Relais 3	CH_03 von COM_0	Bit 3	Relais 35	CH_03 von COM_2
Bit 4	Relais 4	CH_04 von COM_0	Bit 4	Relais 36	CH_04 von COM_2
Bit 5	Relais 5	CH_05 von COM_0	Bit 5	Relais 37	CH_05 von COM_2
Bit 6	Relais 6	CH_06 von COM_0	Bit 6	Relais 38	CH_06 von COM_2
Bit 7	Relais 7	CH_07 von COM_0	Bit 7	Relais 39	CH_07 von COM_2
Bit 8	Relais 8	CH_08 von COM_0	Bit 8	Relais 40	CH_08 von COM_2
Bit 9	Relais 9	CH_09 von COM_0	Bit 9	Relais 41	CH_09 von COM_2
Bit 10	Relais 10	CH_10 von COM_0	Bit 10	Relais 42	CH_10 von COM_2
Bit 11	Relais 11	CH_11 von COM_0	Bit 11	Relais 43	CH_11 von COM_2
Bit 12	Relais 12	CH_12 von COM_0	Bit 12	Relais 44	CH_12 von COM_2
Bit 13	Relais 13	CH_13 von COM_0	Bit 13	Relais 45	CH_13 von COM_2
Bit 14	Relais 14	CH_14 von COM_0	Bit 14	Relais 46	CH_14 von COM_2
Bit 15	Relais 15	CH_15 von COM_0	Bit 15	Relais 47	CH_15 von COM_2
Bit 16	Relais 16	CH_16 von COM_1	Bit 16	Relais 48	CH_16 von COM_3
Bit 17	Relais 17	CH_17 von COM_1	Bit 17	Relais 49	CH_17 von COM_3
Bit 18	Relais 18	CH_18 von COM_1	Bit 18	Relais 50	CH_18 von COM_3
Bit 19	Relais 19	CH_19 von COM_1	Bit 19	Relais 51	CH_19 von COM_3
Bit 20	Relais 20	CH_20 von COM_1	Bit 20	Relais 52	CH_20 von COM_3
Bit 21	Relais 21	CH_21 von COM_1	Bit 21	Relais 53	CH_21 von COM_3
Bit 22	Relais 22	CH_22 von COM_1	Bit 22	Relais 54	CH_22 von COM_3
Bit 23	Relais 23	CH_23 von COM_1	Bit 23	Relais 55	CH_23 von COM_3
Bit 24	Relais 24	CH_24 von COM_1	Bit 24	Relais 56	CH_24 von COM_3
Bit 25	Relais 25	CH_25 von COM_1	Bit 25	Relais 57	CH_25 von COM_3
Bit 26	Relais 26	CH_26 von COM_1	Bit 26	Relais 58	CH_26 von COM_3
Bit 27	Relais 27	CH_27 von COM_1	Bit 27	Relais 59	CH_27 von COM_3
Bit 28	Relais 28	CH_28 von COM_1	Bit 28	Relais 60	CH_28 von COM_3
Bit 29	Relais 29	CH_29 von COM_1	Bit 29	Relais 61	CH_29 von COM_3
Bit 30	Relais 30	CH_30 von COM_1	Bit 30	Relais 62	CH_30 von COM_3
Bit 31	Relais 31	CH_31 von COM_1	Bit 31	Relais 63	CH_31 von COM_3
•		<u> </u>	•		

Parameter

Device Index des PXI 3164 Boards, beginnend mit 1
RelValL Konfigurationswert für die Relais 0..31
RelValH Konfigurationswert für die Relais 32..63
RetValue 0 = Kein Fehler; negativer Wert = Fehler

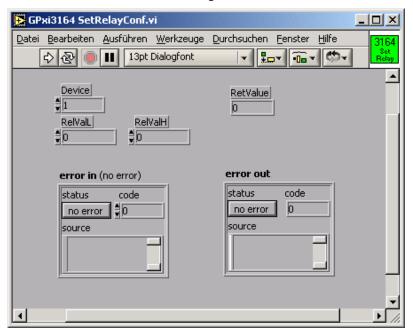


Abbildung 3-2: Frontpanel VI GPxi3164 SetRelayConf

Das physikalische Schalten der Relais auf dem PXI 3164 Board gemäß dieser Sollkonfiguration

erfolgt mit dem <u>VI GPxi3164 UpdateRelay</u>.

Dabei bedeutet ein gesetztes Relaybit der Sollkonfiguration schließen, ein nicht gesetztes Relaybit öffnen des entsprechenden Relaiskontakts.

3.1.3 VI GPxi3164 SetRelayConfMask

Beschreibung

Das VI GPxi3164_SetRelayConfMask setzt die Sollkonfiguration der Relais 0..63 des mit Device indizierten PXI 3164 Boards maskiert. Dazu überträgt das VI den 32 Bit Wert RelValL in die Sollkonfiguration der Relais 0..31 und den 32 Bit Wert RelValH in die Sollkonfiguration der Relais 32..63 mit der Einschränkung, dass nur die Bits der Konfiguration geändert werden, deren zugehörige Maskenbits in RelMaskL und RelMaskH auf 1 stehen.

Bitbelegung in RelValL und RelMaskL

Bitbelegung in RelValH und RelMaskH

	1				1
Bit 0	Relais 0	CH_00 von COM_0	Bit 0	Relais 32	CH_00 von COM_2
Bit 1	Relais 1	CH_01 von COM_0	Bit 1	Relais 33	CH_01 von COM_2
Bit 2	Relais 2	CH_02 von COM_0	Bit 2	Relais 34	CH_02 von COM_2
Bit 3	Relais 3	CH_03 von COM_0	Bit 3	Relais 35	CH_03 von COM_2
Bit 4	Relais 4	CH_04 von COM_0	Bit 4	Relais 36	CH_04 von COM_2
Bit 5	Relais 5	CH_05 von COM_0	Bit 5	Relais 37	CH_05 von COM_2
Bit 6	Relais 6	CH_06 von COM_0	Bit 6	Relais 38	CH_06 von COM_2
Bit 7	Relais 7	CH_07 von COM_0	Bit 7	Relais 39	CH_07 von COM_2
Bit 8	Relais 8	CH_08 von COM_0	Bit 8	Relais 40	CH_08 von COM_2
Bit 9	Relais 9	CH_09 von COM_0	Bit 9	Relais 41	CH_09 von COM_2
Bit 10	Relais 10	CH_10 von COM_0	Bit 10	Relais 42	CH_10 von COM_2
Bit 11	Relais 11	CH_11 von COM_0	Bit 11	Relais 43	CH_11 von COM_2
Bit 12	Relais 12	CH_12 von COM_0	Bit 12	Relais 44	CH_12 von COM_2
Bit 13	Relais 13	CH_13 von COM_0	Bit 13	Relais 45	CH_13 von COM_2
Bit 14	Relais 14	CH_14 von COM_0	Bit 14	Relais 46	CH_14 von COM_2
Bit 15	Relais 15	CH_15 von COM_0	Bit 15	Relais 47	CH_15 von COM_2
Bit 16	Relais 16	CH_16 von COM_1	Bit 16	Relais 48	CH_16 von COM_3
Bit 17	Relais 17	CH_17 von COM_1	Bit 17	Relais 49	CH_17 von COM_3
Bit 18	Relais 18	CH_18 von COM_1	Bit 18	Relais 50	CH_18 von COM_3
Bit 19	Relais 19	CH_19 von COM_1	Bit 19	Relais 51	CH_19 von COM_3
Bit 20	Relais 20	CH_20 von COM_1	Bit 20	Relais 52	CH_20 von COM_3
Bit 21	Relais 21	CH_21 von COM_1	Bit 21	Relais 53	CH_21 von COM_3
Bit 22	Relais 22	CH_22 von COM_1	Bit 22	Relais 54	CH_22 von COM_3
Bit 23	Relais 23	CH_23 von COM_1	Bit 23	Relais 55	CH_23 von COM_3
Bit 24	Relais 24	CH_24 von COM_1	Bit 24	Relais 56	CH_24 von COM_3
Bit 25	Relais 25	CH_25 von COM_1	Bit 25	Relais 57	CH_25 von COM_3
Bit 26	Relais 26	CH_26 von COM_1	Bit 26	Relais 58	CH_26 von COM_3
Bit 27	Relais 27	CH_27 von COM_1	Bit 27	Relais 59	CH_27 von COM_3
Bit 28	Relais 28	CH_28 von COM_1	Bit 28	Relais 60	CH_28 von COM_3
Bit 29	Relais 29	CH_29 von COM_1	Bit 29	Relais 61	CH_29 von COM_3
Bit 30	Relais 30	CH_30 von COM_1	Bit 30	Relais 62	CH_30 von COM_3
Bit 31	Relais 31	CH_31 von COM_1	Bit 31	Relais 63	CH_31 von COM_3

Parameter

Device Index des PXI 3164 Boards, beginnend mit 1

RelMaskL 32 Bit Maske für die Relais 0..31
RelMaskH 32 Bit Maske für die Relais 32..63
RelValL 32 Bit Wert für die Relais 0..31
RelValH 32 Bit Wert für die Relais 32..63

RetValue 0 = Kein Fehler; negativer Wert = Fehler

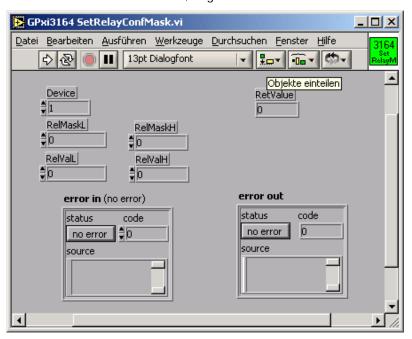


Abbildung 3-3: Frontpanel VI GPxi3164 SetRelayConfMask

Das physikalische Schalten der Relais auf dem PXI 3164 Board gemäß dieser Sollkonfiguration

erfolgt mit dem VI GPxi3164 UpdateRelay.

Dabei bedeutet ein gesetztes Relaybit der Sollkonfiguration schließen, ein nicht gesetztes Relaybit öffnen des entsprechenden Relaiskontakts

(sofern das zugehörige Maskenbit in RelMask auf 1 steht).

3.1.4 VI GPxi3164 GetRelayConf

Beschreibung

Mit dem VI GPxi3164 GetRelayConf wird der tatsächliche Verschaltungszustand der Relais auf dem PXI 3164 Board auf indirektem Wege ermittelt:

Das VI gibt die Sollkonfiguration der Relais 0..63 des mit Device indizierten PXI 3164 Boards zurück.

Nach Ausführung des <u>VI GPxi3164 UpdateRelay</u> entspricht der Rückgabewert dieses VIs dem tatsächlichen Verschaltungszustand der Relais auf dem Board.

Bitbelegung in RelValL

Bitbelegung in RelValH

Bit 0	Relais 0	CH_00 von COM_0	E	Bit 0	Relais 32	CH_00 von COM_2
Bit 1	Relais 1	CH_01 von COM_0	E	Bit 1	Relais 33	CH_01 von COM_2
Bit 2	Relais 2	CH_02 von COM_0	E	Bit 2	Relais 34	CH_02 von COM_2
Bit 3	Relais 3	CH_03 von COM_0	E	Bit 3	Relais 35	CH_03 von COM_2
Bit 4	Relais 4	CH_04 von COM_0	E	Bit 4	Relais 36	CH_04 von COM_2
Bit 5	Relais 5	CH_05 von COM_0	E	Bit 5	Relais 37	CH_05 von COM_2
Bit 6	Relais 6	CH_06 von COM_0	E	Bit 6	Relais 38	CH_06 von COM_2
Bit 7	Relais 7	CH_07 von COM_0	E	Bit 7	Relais 39	CH_07 von COM_2
Bit 8	Relais 8	CH_08 von COM_0	E	Bit 8	Relais 40	CH_08 von COM_2
Bit 9	Relais 9	CH_09 von COM_0	E	Bit 9	Relais 41	CH_09 von COM_2
Bit 10	Relais 10	CH_10 von COM_0	E	Bit 10	Relais 42	CH_10 von COM_2
Bit 11	Relais 11	CH_11 von COM_0	E	Bit 11	Relais 43	CH_11 von COM_2
Bit 12	Relais 12	CH_12 von COM_0	E	Bit 12	Relais 44	CH_12 von COM_2
Bit 13	Relais 13	CH_13 von COM_0	E	Bit 13	Relais 45	CH_13 von COM_2
Bit 14	Relais 14	CH_14 von COM_0	E	Bit 14	Relais 46	CH_14 von COM_2
Bit 15	Relais 15	CH_15 von COM_0	E	Bit 15	Relais 47	CH_15 von COM_2
Bit 16	Relais 16	CH_16 von COM_1	E	Bit 16	Relais 48	CH_16 von COM_3
Bit 17	Relais 17	CH_17 von COM_1	E	Bit 17	Relais 49	CH_17 von COM_3
Bit 18	Relais 18	CH_18 von COM_1	E	Bit 18	Relais 50	CH_18 von COM_3
Bit 19	Relais 19	CH_19 von COM_1	E	Bit 19	Relais 51	CH_19 von COM_3
Bit 20	Relais 20	CH_20 von COM_1	E	Bit 20	Relais 52	CH_20 von COM_3
Bit 21	Relais 21	CH_21 von COM_1	E	Bit 21	Relais 53	CH_21 von COM_3
Bit 22	Relais 22	CH_22 von COM_1	E	Bit 22	Relais 54	CH_22 von COM_3
Bit 23	Relais 23	CH_23 von COM_1	E	Bit 23	Relais 55	CH_23 von COM_3
Bit 24	Relais 24	CH_24 von COM_1	E	Bit 24	Relais 56	CH_24 von COM_3
Bit 25	Relais 25	CH_25 von COM_1	E	Bit 25	Relais 57	CH_25 von COM_3
Bit 26	Relais 26	CH_26 von COM_1	E	Bit 26	Relais 58	CH_26 von COM_3
Bit 27	Relais 27	CH_27 von COM_1	E	Bit 27	Relais 59	CH_27 von COM_3
Bit 28	Relais 28	CH_28 von COM_1	E	Bit 28	Relais 60	CH_28 von COM_3
Bit 29	Relais 29	CH_29 von COM_1	E	Bit 29	Relais 61	CH_29 von COM_3
Bit 30	Relais 30	CH_30 von COM_1	E	Bit 30	Relais 62	CH_30 von COM_3
Bit 31	Relais 31	CH_31 von COM_1	E	Bit 31	Relais 63	CH_31 von COM_3

Parameter

Device Index des PXI 3164 Boards, beginnend mit 1

RelValL Abbild (Lesewert) des 32 Bit Wertes

für die Relais 0..31

RelValH Abbild (Lesewert) des 32 Bit Wertes

für die Relais 32..63

Return 0 = Kein Fehler; negativer Wert = Fehler

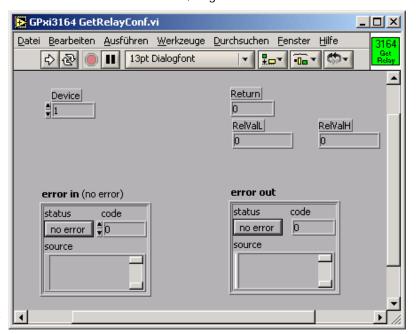


Abbildung 3-4: Frontpanel VI GPxi3164 GetRelayConf

3.1.5 VI GPxi3164 UpdateRelay

Beschreibung

Das VI GPXI3164_UpdateRelay verschaltet die Relais 0..63 des mit Device indizierten PXI 3164 Boards wie in der Sollkonfiguration angegeben.

Nach Ausführung des VIs stimmt der tatsächliche Verschaltungszustand der Relais mit der Konfiguration überein.

Parameter

Device Index des PXI 3164 Boards, beginnend mit 1

RetValue 0 = Kein Fehler; negativer Wert = Fehler

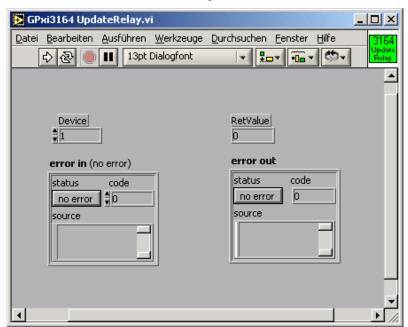


Abbildung 3-5: Frontpanel VI GPxi3164 UpdateRelay

3.1.6 VI GPxi3164 DLL Version

Beschreibung

Das VI GPxi3164_DLLVersion dient zur Abfrage der Versionsnummer der DLL.

Parameter

DLL-Version Versionsnummer der DLL

RetValue 0 = Kein Fehler; negativer Wert = Fehler

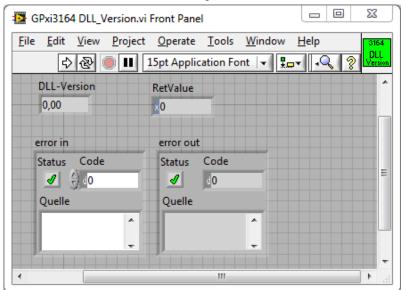


Abbildung 3-6: Frontpanel VI GPxi3164 DLL Version

3.2 Programmieren über DLL-Funktionen

Mit den nachfolgend beschriebenen Funktionsaufrufen können PXI 3164-Boards direkt aus diversen Hochsprachen angesprochen werden (VisualC++, CVI).

Der Begriff GPxi3164 in der folgenden Funktionsbeschreibung steht für PXI 3164.

Informationen zu den Strukturen, Datentypen und Error-Codes enthalten die C-Header Files – die entsprechenden Dateien finden Sie auf der mitgelieferten CD.

Windows Device Treiber

Die für die Programmierung unter Verwendung des Windows Device Treibers nutzbaren DLL-Funktionen sind in den folgenden Abschnitten beschrieben:

- DriverInfo
- SetRelayConfig
- SetRelayConfigMask
- GetRelayConfig
- <u>UpdateRelay</u>
- DLL Version

Struktur GPxi3164_StructDriverInfo

```
typedef struct
    {
    unsigned long Version;
    unsigned char DevCount;
    unsigned char DevIndexes[K_DEV_MAX];
    } GPxi3164_StructDriverInfo;
```

Version Version des Hardware-Treibers.

Das obere Wort repräsentiert den ganzzahligen Teil und das untere Wort repräsentiert die Hundertstel

der Versionsnummer.

DevCount Anzahl der erkannten PXI 3164 Boards
DevIndexes PCI/ PXI-Slot Nummern der erkannten

PXI 3164 Boards

(ohne Bezug auf die geografische Platzierung)

3.2.1 GPxi3164 GetDriverInfo

Die Funktion GPxi3164_GetDriverInfo gibt Informationen über den Status des Hardware-Treibers zurück.

Format:

int GPxi3164_GetDriverInfo(GPxi3164_StructDriverInfo *pDriverInfo);

Parameter:

*pDriverInfo

Adresse auf eine Struktur für die Status-Informationen. Zur Struktur siehe **Struktur GPxi3164_StructDriverInfo** unter <u>Programmieren über DLL-Funktionen</u>.

Beschreibung:

Die Funktion GPxi3164_GetDriverInfo gibt Informationen über den Status des Hardware-Treibers zurück.

Dazu muss der Funktion die Adresse einer Struktur pDriverInfo übergeben werden.

Innerhalb der Funktion wird diese Struktur mit verschiedenen Informationen gefüllt.

3.2.2 GPxi3164 SetRelayConf

Die Funktion GPxi3164_SetRelayConf setzt die Sollkonfiguration der Relais 0..63 des mit Device indizierten PXI 3164 Boards.

Bitbelegung in RelValL

Bitbelegung in RelValH

	ais 0				
	uis o	CH_00 von COM_0	Bit 0	Relais 32	CH_00 von COM_2
Bit 1 Rel	ais 1	CH_01 von COM_0	Bit 1	Relais 33	CH_01 von COM_2
Bit 2 Rel	ais 2	CH_02 von COM_0	Bit 2	Relais 34	CH_02 von COM_2
Bit 3 Rel	ais 3	CH_03 von COM_0	Bit 3	Relais 35	CH_03 von COM_2
Bit 4 Rel	ais 4	CH_04 von COM_0	Bit 4	Relais 36	CH_04 von COM_2
Bit 5 Rel	ais 5	CH_05 von COM_0	Bit 5	Relais 37	CH_05 von COM_2
Bit 6 Rel	ais 6	CH_06 von COM_0	Bit 6	Relais 38	CH_06 von COM_2
Bit 7 Rel	ais 7	CH_07 von COM_0	Bit 7	Relais 39	CH_07 von COM_2
Bit 8 Rel	ais 8	CH_08 von COM_0	Bit 8	Relais 40	CH_08 von COM_2
Bit 9 Rel	ais 9	CH_09 von COM_0	Bit 9	Relais 41	CH_09 von COM_2
Bit 10 Rel	ais 10	CH_10 von COM_0	Bit 10	Relais 42	CH_10 von COM_2
Bit 11 Rel	ais 11	CH_11 von COM_0	Bit 11	Relais 43	CH_11 von COM_2
Bit 12 Rel	ais 12	CH_12 von COM_0	Bit 12	Relais 44	CH_12 von COM_2
Bit 13 Rel	ais 13	CH_13 von COM_0	Bit 13	Relais 45	CH_13 von COM_2
Bit 14 Rel	ais 14	CH_14 von COM_0	Bit 14	Relais 46	CH_14 von COM_2
Bit 15 Rel	ais 15	CH_15 von COM_0	Bit 15	Relais 47	CH_15 von COM_2
Bit 16 Rel	ais 16	CH_16 von COM_1	Bit 16	Relais 48	CH_16 von COM_3
Bit 17 Rel	ais 17	CH_17 von COM_1	Bit 17	Relais 49	CH_17 von COM_3
Bit 18 Rel	ais 18	CH_18 von COM_1	Bit 18	Relais 50	CH_18 von COM_3
Bit 19 Rel	ais 19	CH_19 von COM_1	Bit 19	Relais 51	CH_19 von COM_3
Bit 20 Rel	ais 20	CH_20 von COM_1	Bit 20	Relais 52	CH_20 von COM_3
Bit 21 Rel	ais 21	CH_21 von COM_1	Bit 21	Relais 53	CH_21 von COM_3
Bit 22 Rel	ais 22	CH_22 von COM_1	Bit 22	Relais 54	CH_22 von COM_3
Bit 23 Rel	ais 23	CH_23 von COM_1	Bit 23	Relais 55	CH_23 von COM_3
Bit 24 Rel	ais 24	CH_24 von COM_1	Bit 24	Relais 56	CH_24 von COM_3
Bit 25 Rel	ais 25	CH_25 von COM_1	Bit 25	Relais 57	CH_25 von COM_3
Bit 26 Rel	ais 26	CH_26 von COM_1	Bit 26	Relais 58	CH_26 von COM_3
Bit 27 Rel	ais 27	CH_27 von COM_1	Bit 27	Relais 59	CH_27 von COM_3
Bit 28 Rel	ais 28	CH_28 von COM_1	Bit 28	Relais 60	CH_28 von COM_3
Bit 29 Rel	ais 29	CH_29 von COM_1	Bit 29	Relais 61	CH_29 von COM_3
Bit 30 Rel	ais 30	CH_30 von COM_1	Bit 30	Relais 62	CH_30 von COM_3
Bit 31 Rel	ais 31	CH_31 von COM_1	Bit 31	Relais 63	CH_31 von COM_3

Format:

Parameter:

Device

Index des PXI 3164 Boards, beginnend mit 1

RelValL

32 Bit Wert für die Relais 0..31

RelValH

32 Bit Wert für die Relais 32..63

Beschreibung:

Die Funktion überträgt den 32 Bit Wert RelValL in die Sollkonfiguration der Relais 0..31 und einen weiteren 32 Bit Wert RelValH in die Sollkonfiguration der Relais 32..63.

Das physikalische Schalten der Relais auf dem PXI 3164 Board gemäß dieser Sollkonfiguration erfolgt mit dem Befehl GPxi3164 UpdateRelay.

Dabei bedeutet ein gesetztes Relaybit der Sollkonfiguration schließen, ein nicht gesetztes Relaybit öffnen des entsprechenden Relaiskontakts.

3.2.3 GPxi3164 SetRelayConfMask

Die Funktion GPxi3164_SetRelayConfMask setzt die Sollkonfiguration der Relais 0..63 des mit Device indizierten PXI 3164 Boards maskiert.

Bitbelegung in RelValL und RelMaskL

Bitbelegung in RelValL und RelMaskL

Bit 0	Relais 0	CH_00 von COM_0	Bit 0	Relais 32	CH_00 von COM_2
Bit 1	Relais 1	CH_01 von COM_0	Bit 1	Relais 33	CH_01 von COM_2
Bit 2	Relais 2	CH_02 von COM_0	Bit 2	Relais 34	CH_02 von COM_2
Bit 3	Relais 3	CH_03 von COM_0	Bit 3	Relais 35	CH_03 von COM_2
Bit 4	Relais 4	CH_04 von COM_0	Bit 4	Relais 36	CH_04 von COM_2
Bit 5	Relais 5	CH_05 von COM_0	Bit 5	Relais 37	CH_05 von COM_2
Bit 6	Relais 6	CH_06 von COM_0	Bit 6	Relais 38	CH_06 von COM_2
Bit 7	Relais 7	CH_07 von COM_0	Bit 7	Relais 39	CH_07 von COM_2
Bit 8	Relais 8	CH_08 von COM_0	Bit 8	Relais 40	CH_08 von COM_2
Bit 9	Relais 9	CH_09 von COM_0	Bit 9	Relais 41	CH_09 von COM_2
Bit 10	Relais 10	CH_10 von COM_0	Bit 10	Relais 42	CH_10 von COM_2
Bit 11	Relais 11	CH_11 von COM_0	Bit 11	Relais 43	CH_11 von COM_2
Bit 12	Relais 12	CH_12 von COM_0	Bit 12	Relais 44	CH_12 von COM_2
Bit 13	Relais 13	CH_13 von COM_0	Bit 13	Relais 45	CH_13 von COM_2
Bit 14	Relais 14	CH_14 von COM_0	Bit 14	Relais 46	CH_14 von COM_2
Bit 15	Relais 15	CH_15 von COM_0	Bit 15	Relais 47	CH_15 von COM_2
Bit 16	Relais 16	CH_16 von COM_1	Bit 16	Relais 48	CH_16 von COM_3
Bit 17	Relais 17	CH_17 von COM_1	Bit 17	Relais 49	CH_17 von COM_3
Bit 18	Relais 18	CH_18 von COM_1	Bit 18	Relais 50	CH_18 von COM_3
Bit 19	Relais 19	CH_19 von COM_1	Bit 19	Relais 51	CH_19 von COM_3
Bit 20	Relais 20	CH_20 von COM_1	Bit 20	Relais 52	CH_20 von COM_3
Bit 21	Relais 21	CH_21 von COM_1	Bit 21	Relais 53	CH_21 von COM_3
Bit 22	Relais 22	CH_22 von COM_1	Bit 22	Relais 54	CH_22 von COM_3
Bit 23	Relais 23	CH_23 von COM_1	Bit 23	Relais 55	CH_23 von COM_3
Bit 24	Relais 24	CH_24 von COM_1	Bit 24	Relais 56	CH_24 von COM_3
Bit 25	Relais 25	CH_25 von COM_1	Bit 25	Relais 57	CH_25 von COM_3
Bit 26	Relais 26	CH_26 von COM_1	Bit 26	Relais 58	CH_26 von COM_3
Bit 27	Relais 27	CH_27 von COM_1	Bit 27	Relais 59	CH_27 von COM_3
Bit 28	Relais 28	CH_28 von COM_1	Bit 28	Relais 60	CH_28 von COM_3
Bit 29	Relais 29	CH_29 von COM_1	Bit 29	Relais 61	CH_29 von COM_3
Bit 30	Relais 30	CH_30 von COM_1	Bit 30	Relais 62	CH_30 von COM_3
Bit 31	Relais 31	CH_31 von COM_1	Bit 31	Relais 63	CH_31 von COM_3

Format:

Parameter:

Device

Index des PXI 3164 Boards, beginnend mit 1

RelMaskL

32 Bit Maskenwert für die Relais 0..31

RelMaskH

32 Bit Maskenwert für die Relais 32..63

RelValL

32 Bit Wert für die Relais 0..31

RelValH

32 Bit Wert für die Relais 32..63

Beschreibung:

Die Funktion überträgt den 32 Bit Wert RelValL in die Sollkonfiguration der Relais 0..31 und einen weiteren 32 Bit Wert RelValH in die Sollkonfiguration der Relais 32..63 mit der Einschränkung, dass nur die Bits der Konfiguration geändert werden, deren zugehörige Maskenbits in RelMaskL und RelMaskH auf 1 stehen.

Das physikalische Schalten der Relais auf dem PXI 3164 Board gemäß dieser Sollkonfiguration erfolgt mit dem Befehl <u>GPxi3164 UpdateRelay</u>.

Dabei bedeutet ein gesetztes Relaybit der Sollkonfiguration schließen, ein nicht gesetztes Relaybit öffnen des entsprechenden Relaiskontakts (sofern die zugehörigen Maskenbits in RelMaskL und RelMaskH auf 1 stehen).

3.2.4 GPxi3164 GetRelayConf

Mit der Funktion GPxi3164_GetRelayConf wird der tatsächliche Verschaltungszustand der Relais auf dem PXI 3164 Board auf indirektem Wege ermittelt:

Die Funktion gibt die Sollkonfiguration der Relais 0..63 des mit Device indizierten PXI 3164 Boards zurück.

Bitbelegung in RelValL

Bitbelegung in RelValH

Bit 0	Relais 0	CH_00 von COM_0	Bit 0	Relais 32	CH_00 von COM_2
Bit 1	Relais 1	CH_01 von COM_0	Bit 1	Relais 33	CH_01 von COM_2
Bit 2	Relais 2	CH_02 von COM_0	Bit 2	Relais 34	CH_02 von COM_2
Bit 3	Relais 3	CH_03 von COM_0	Bit 3	Relais 35	CH_03 von COM_2
Bit 4	Relais 4	CH_04 von COM_0	Bit 4	Relais 36	CH_04 von COM_2
Bit 5	Relais 5	CH_05 von COM_0	Bit 5	Relais 37	CH_05 von COM_2
Bit 6	Relais 6	CH_06 von COM_0	Bit 6	Relais 38	CH_06 von COM_2
Bit 7	Relais 7	CH_07 von COM_0	Bit 7	Relais 39	CH_07 von COM_2
Bit 8	Relais 8	CH_08 von COM_0	Bit 8	Relais 40	CH_08 von COM_2
Bit 9	Relais 9	CH_09 von COM_0	Bit 9	Relais 41	CH_09 von COM_2
Bit 10	Relais 10	CH_10 von COM_0	Bit 10	Relais 42	CH_10 von COM_2
Bit 11	Relais 11	CH_11 von COM_0	Bit 11	Relais 43	CH_11 von COM_2
Bit 12	Relais 12	CH_12 von COM_0	Bit 12	Relais 44	CH_12 von COM_2
Bit 13	Relais 13	CH_13 von COM_0	Bit 13	Relais 45	CH_13 von COM_2
Bit 14	Relais 14	CH_14 von COM_0	Bit 14	Relais 46	CH_14 von COM_2
Bit 15	Relais 15	CH_15 von COM_0	Bit 15	Relais 47	CH_15 von COM_2
Bit 16	Relais 16	CH_16 von COM_1	Bit 16	Relais 48	CH_16 von COM_3
Bit 17	Relais 17	CH_17 von COM_1	Bit 17	Relais 49	CH_17 von COM_3
Bit 18	Relais 18	CH_18 von COM_1	Bit 18	Relais 50	CH_18 von COM_3
Bit 19	Relais 19	CH_19 von COM_1	Bit 19	Relais 51	CH_19 von COM_3
Bit 20	Relais 20	CH_20 von COM_1	Bit 20	Relais 52	CH_20 von COM_3
Bit 21	Relais 21	CH_21 von COM_1	Bit 21	Relais 53	CH_21 von COM_3
Bit 22	Relais 22	CH_22 von COM_1	Bit 22	Relais 54	CH_22 von COM_3
Bit 23	Relais 23	CH_23 von COM_1	Bit 23	Relais 55	CH_23 von COM_3
Bit 24	Relais 24	CH_24 von COM_1	Bit 24	Relais 56	CH_24 von COM_3
Bit 25	Relais 25	CH_25 von COM_1	Bit 25	Relais 57	CH_25 von COM_3
Bit 26	Relais 26	CH_26 von COM_1	Bit 26	Relais 58	CH_26 von COM_3
Bit 27	Relais 27	CH_27 von COM_1	Bit 27	Relais 59	CH_27 von COM_3
Bit 28	Relais 28	CH_28 von COM_1	Bit 28	Relais 60	CH_28 von COM_3
Bit 29	Relais 29	CH_29 von COM_1	Bit 29	Relais 61	CH_29 von COM_3
Bit 30	Relais 30	CH_30 von COM_1	Bit 30	Relais 62	CH_30 von COM_3
Bit 31	Relais 31	CH_31 von COM_1	Bit 31	Relais 63	CH_31 von COM_3

Format:

Parameter:

Device

Index des PXI 3164 Boards, beginnend mit 1

*RelValL

Adresse eines 32 Bit Wertes für die Relais 0..31

*RelValH

Adresse eines 32 Bit Wertes für die Relais 32..63

Beschreibung:

Diese Funktion liest das Sollkonfigurationsregister aus.

Nach Ausführung der Funktion <u>GPxi3164 UpdateRelay</u> entspricht der Rückgabewert dieser Funktion dem tatsächlichen Verschaltungszustand der Relais auf dem Board.

3.2.5 GPxi3164 UpdateRelay

Die Funktion GPxi3164_UpdateRelay verschaltet die Relais 0..63 des mit Device indizierten PXI 3164 Boards wie in der Sollkonfiguration angegeben.

Format:

int GPxi3164_UpdateRelay(unsigned int Device);

Parameter:

Device

Index des PXI 3164 Boards, beginnend mit 1

Beschreibung:

Nach Ausführung dieser Funktion entspricht der tatsächliche Verschaltungszustand der Relais den Sollkonfigurationswerten.

3.2.6 GPxi3164 DLL Version

Die Funktion GPxi3164_DLL_Version dient zur Abfrage der Versionsnummer der DLL.

Format:

int GPxi3164_DLL_Version(unsigned int *pVersion);

Parameter

*pVersion

Versionsnummer

Beschreibung:

Die Funktion GPxi3164_DLL_Version gibt die Versionsnummer der *GPxi3164.dll* als Integer-Wert zurück.

Beispiel:

Die Versionsnummer 1.23 wird als Wert 123 zurückgegeben, Version 1.60 als Wert 160.

A	\mathcal{T}
Abmessungen2-2	Treiberinstallation PXI1-2
D	
	V
DLL-Funktionen 3-11	
	VIs unter Windows3-1
G	
8	W
Gewährleistung	
Bedingungen1-3	Windows Treiber3-11
Kennzeichnung1-3	Windows [®] Gerätemanager 1-2
P	
	Z
PXI 3164	
Elektrische Kennwerte 2-2	Zubehör1-1

Treiberinstallation1-2