

Product Specification

USB 3080
basicCAR 3080

CAN/ LIN/ K-LINE/ J1850 Interfaces
User Manual Version 1.3

GOEPEL electronic GmbH
Goeschwitzer Str. 58/60
D-07745 Jena
Phone: +49-3641-6896-597
Fax: +49-3641-6896-944
E-Mail: ats_support@goepel.com
http://www.goepel.com Get the tota l Coverage!

Issue: June 2010

© 2010 GOEPEL electronic GmbH. All rights reserved.

The software described in this manual as well as the manual itself are supplied under license and
may be used or copied only in accordance with the terms of the license.
The customer may make one copy of the software for safety purposes.

The contents of the manual is subject to change without prior notice and is supplied for information
only.
Hardware and software might be modified also without prior notice due to technical progress.

In case of inaccuracies or errors appearing in this manual, GOEPEL electronic GmbH assumes
no liability or responsibility.

Without the prior written permission of GOEPEL electronic GmbH, no part of this documentation
may be transmitted, reproduced or stored in a retrieval system in any form or by any means
as well as translated into other languages (except as permitted by the license).

GOEPEL electronic GmbH is neither liable for direct damages nor consequential damages from
the company’s product applications.

printed: 09.06.2010

All product and company names appearing in this manual are trade names or registered trade names of their respective owners.

Table of Contents

 USB 3080/ basicCAR 3080 – User Manual I

1 INSTALLATION .. 1-1

1.1 HARDWARE INSTALLATION ... 1-1
1.2 DRIVER INSTALLATION .. 1-2

2 HARDWARE ... 2-1

2.1 DEFINITION ... 2-1
2.2 TECHNICAL SPECIFICATION .. 2-3

2.2.1 Dimensions .. 2-3
2.2.2 Properties .. 2-3

2.3 CONSTRUCTION .. 2-4
2.3.1 General .. 2-4
2.3.2 Communication Interfaces 2-5
2.3.3 Addressing ... 2-7
2.3.4 Assembly ... 2-8
2.3.5 Connector Assignments ... 2-9
2.3.6 LED Display .. 2-10

2.4 DELIVERY NOTES... 2-11

3 CONTROL SOFTWARE .. 3-1

3.1 PROGRAMMING VIA G-API ... 3-1
3.2 PROGRAMMING VIA DLL FUNCTIONS 3-1

3.2.1 Windows Device Driver ... 3-2
3.2.1.1 Driver_Info ... 3-3
3.2.1.2 DLL_Info .. 3-4
3.2.1.3 Write_FIFO ... 3-5
3.2.1.4 Read_FIFO ... 3-6
3.2.1.5 Read_FIFO_Timeout .. 3-7
3.2.1.6 Write_COMMAND .. 3-8
3.2.1.7 Read_COMMAND... 3-9
3.2.1.8 Xilinx_Download .. 3-10
3.2.1.9 Xilinx_Version ... 3-11

3.3 PROGRAMMING WITH LABVIEW .. 3-12
3.3.1 LabVIEW via G-API ... 3-12
3.3.2 LLB using the Windows Device Driver 3-12

3.4 FURTHER GOEPEL SOFTWARE ... 3-12
3.5 USB CONTROLLER CONTROL COMMANDS 3-13

3.5.1 USB Command Structure 3-13
3.5.2 USB Response Structure .. 3-13
3.5.3 USB Commands .. 3-13

Installation

 USB 3080/ basicCAR 3080 – User Manual 1-1

1 Installation

1.1 Hardware Installation
Generally hardware installation for USB 3080/ basicCAR 3080 means
exchanging the transceiver modules.

Please make absolutely certain that all of the installation procedures
described below are carried out with your system switched off.

If it is necessary to exchange transceiver modules, the corresponding
device is to be opened according to its conditions.
Doing this, pay attention to the general rules to avoid electrostatic
charging.
Transceiver modules must never be removed or mounted with the
power switched on!
In addition, the right alignment is absolutely required (see Assembly).

Installation

1-2 USB 3080/ basicCAR 3080 – User Manual

1.2 Driver Installation
For proper installation of the GOEPEL electronic USB drivers on your
system, we recommend to execute the GUSB driver setup.
To do that, start the GUSB-Setup-*.exe setup program
(of the supplied CD, “*” stands for the version number) and follow
the instructions.

At present, the available device driver only supports
Windows® 2000/ XP systems.

If you want to create your own software for USB 3080/ basicCAR 3080
devices, you possibly need additional files for user specific
programming (*.LLB, *.H). These files are not automatically copied to
the computer and have to be transferred individually from the supplied
CD to your development directory.

The USB interface uses the high-speed data rate according to the
USB2.0 specification (if possible, otherwise full-speed).

After driver installation, you can check whether the devices are
properly embedded by the system.
The following picture shows the successful embedding of four
USB 3080 (or basicCAR 3080) devices:

Please note that the Device Manager shows ALL USB controllers.

Figure 1-1:
Display of Device Manager

Hardware

 USB 3080/ basicCAR 3080 – User Manual 2-1

2 Hardware

2.1 Definition
USB 3080 multi interface boards are GOEPEL electronic GmbH
communication boards with USB 2.0 interface.
These boards are used in general control technology, especially for
applications in automotive technology.

Please note: Downloading the Xilinx FPGA is absolutely required for
operating the USB 3080 board (see Xilinx_Download in the
Windows Device Driver section)!

For operating USB 3080 boards you need the GOEPEL electronic USB
rack which can cover up to 16 GOEPEL electronic USB boards.
In this case, power supply comes from the built-in power supply
unit.

Figure 2-1:
USB 3080

Hardware

2-2 USB 3080/ basicCAR 3080 – User Manual

basicCAR 3080 is a GOEPEL electronic stand-alone device based on a
USB 3080 multi interface communication board to be connected to a
PC or laptop.
It was in particular developed for applications out of complex test
systems. The external power supply allows the use of this device for
data acquisition and the inspection of signals in motor vehicles.

Power supply with 8..25 VDC (and approx. 350 mA at 12 V) is effected
via the two ext. Power Supply females (red = plus/ blue= minus) at
the device’s rear side (opposite to the communication interfaces side).
These females are used to supply the internal logic. In addition, the
blue female is connected with the GND connections of the USB
interface.
On the other hand, all connections of the communication interfaces
are galvanically isolated from the USB interface and the internal logic.
In the maximum construction stage, USB 3080/ basicCAR 3080 devices
offer the following resources:

♦ 2 x CAN
♦ 2 x LIN or K-Line
♦ 1 x J1850 VPW
♦ 1 x J1850 PWM

(in this case only ONE LIN or K-Line interface is possible)
♦ 4 x digital input
♦ 4 x digital output
♦ 2 x analog input
♦ 1 x Wake line

Communication for J1850 PWM is made via the LIN2/ K-Line
interface!!!

In the case a basicCAR 3080 does not provide enough resources for
your applications, there is the GOEPEL electronic USB rack available to
cover up to 16 USB boards.
Then the power supply comes from a built-in power supply unit with
230V or 115V connector at the device’s rear side.

Figure 2-2:
basicCAR 3080

Hardware

 USB 3080/ basicCAR 3080 – User Manual 2-3

2.2 Technical Specification

The board dimensions correspond to the standard dimensions of the
accompanying bus system (width x height x depth):

♦ USB 3080: 4 HP x 130 mm x 185 mm
♦ basicCAR 3080: 145 mm x 70 mm x 220 mm

The dimensions stated for USB 3080 refer to an installed board.

The characteristics of USB 3080/ basicCAR 3080 are as follows:

Symbol Parameter Min. Typ. Max. Unit Remarks

VBAT Battery voltage 12 27 V Acc. to transceiver’s type

 Transmission rate 1 MBaud CAN

 Transmission rate 22 kBaud LIN

Rbus Terminating resistor 1 120 Ohm CAN jumper plugged in

Rbus Terminating resistors 2 10 kOhm CAN jumper plugged in

RPullup Pull-up resistor 680 Ohm K-Line jumper plugged in

Vin Input voltage 3.3 50 V Digital input

Vout Output voltage VBAT V Digital output, OC

Vin Input voltage 20 26 V Analog input

Viso Galvanic separation 560 V USB In-/ output

The Analog input channels are designed with the LTC 1400
(analog-to-digital transducer) of Linear Technology.
This component has a Resolution of 12 Bit and an Input voltage
range of 0..4.095V.
Caused by the input voltage divider (122K/22K) the following results
for the measured voltage:
Vmeas = AD transducer value * 1mV * (122K/22K).

Please make absolutely certain to supply the transceivers via the
VBAT battery voltage connections with the LOWEST maximum
voltage of all transceivers.

2.2.1 Dimensions

2.2.2 Properties

Hardware

2-4 USB 3080/ basicCAR 3080 – User Manual

2.3 Construction

An ASIC (TC1775) is used as the interface to the USB bus for
USB 3080/ basicCAR 3080. It includes all the function blocks required for
the communication with the computer bus.

USB
Interface

TC1775

se
ria

l0

CA
N

0
J1

85
0

se
ria

l1

CA
N

1
D

ig
_I

n
D

ig
_O

ut

Optical
coupling
device

K-Line/ LIN

K-Line/ LIN
J1850PWM

CAN

CAN

J1850VPW

4 x
Digital out

4 x
Digital in

2 x
Analog in

RAM/
Flash...

Wake
line

Flash interface

plug-in
Transceiver

plug-in
Transceiver

plug-in
Transceiver

plug-in
Transceiver

plug-in
Transceiver

AD
transducer

Figure 2-3: Block diagramm of a USB 3080/ basicCAR 3080 device

Please use the delivered USB cables to connect USB 3080/
basicCAR 3080 devices to the PC’s USB interface.
Other cables may be inapplicable.

2.3.1 General

Hardware

 USB 3080/ basicCAR 3080 – User Manual 2-5

2 x CAN-Interface Version 2.0b:
The type of the mounted transceiver is decisive for proper operation
of a CAN interface in a network. Often CAN networks do only operate
properly in the case that all members use a compatible type of
transceiver.
To offer maximal flexibility to the users of a USB 3080, the transceivers
are designed as plug-in modules. There are several types (high speed,
low speed, single-wire etc.) that can be easily exchanged.
Not only the type of the mounted transceiver, but also the terminating
resistor of the bus is very important for proper operation of a CAN
network.
For the use of highspeed CAN transceivers, usually one 120 Ohm
resistor is active on each CAN interface.These resistors can be
deactivated by removing the J1401 or J1501 jumpers.
In the case of lowspeed CAN transceivers, usually two resistors with a
resistance value of 10 kOhm for RTH and RTL are active for each
CAN interface (by inserting the J1402/ J1403 or J1502/ J1503
jumpers).
Then, the J1401 or J1501 jumpers must NOT be plugged-in.

2.3.2 Commu-
nication Interfaces

Figure 2-4:
CAN Interface

Hardware

2-6 USB 3080/ basicCAR 3080 – User Manual

2 x LIN Interface Version 2.0 or
2 x K-Line Interface (ISO 9141)

LIN:

The transceivers are designed as plug-in modules.
Generally, the TJA1020 is used for this type of transceicer.
For the standard design of the transceiver modules, it is possible to
change over between Master and Slave configuration per software
using the Rel1 relay for LIN1 and Rel2 for LIN2. The pull-up resistors
for LIN are located on the transceiver module. Therefore the J1601
or J1701 jumpers must NOT be plugged-in.
Via the VBat contacts the power supply of the transceiver modules is
connected. According to the LIN specification, this power supply is to
be carried out via a reverse polarity diode. Therefore the J1602 or
J1703 jumpers must NOT be plugged-in.

K-Line:
The transceivers are designed as plug-in modules. Generally, the
L9637 is used for this type of transceicer.
Via the VBat contacts the power supply of the transceiver modules is
connected. To bridge the reverse polarity diode for VBat for LIN, the
J1602 or J1703 jumpers must be plugged-in.
In the case the pull-up resistor to VBat is to be activated, the J1601
or J1701 jumpers must be plugged-in.

Figure 2-5:
LIN/ K-Line Interface

Hardware

 USB 3080/ basicCAR 3080 – User Manual 2-7

J1850 Interfaces:
The transceivers are designed as plug-in modules.
Generally, the AU5780 is used for J1850 VPW transceivers.
The output circuitry of a J1850 PWM transceiver is realized by discrete
components.

The transceiver for a J1850 VPW interface has to be inserted at the
position for the J1850 transceiver.
On the other hand, the transceiver for a J1850 PWM interface must be
inserted at the position for the LIN/ K-Line 2 transceiver (see also
Figure 2-6).

J1701 must NOT be mounted in the case of a J1850 PWM
interface!

The individual USB 3080 boards (e.g. of the GOEPEL electronic USB
rack) are exclusively addressed according to their serial numbers
(see Control Software):
The device with the LEAST serial number is always the device with
the number 1.

To improve clarity, we recommend to arrange several USB 3080
boards in the order of ascending serial numbers in the GOEPEL
electronic USB rack (or to connect several basicCAR 3080 devices in
that order to the PC/ Laptop.

2.3.3 Addressing

Hardware

2-8 USB 3080/ basicCAR 3080 – User Manual

Figure 2-6 shows schematically the component side of a USB 3080
device. You can see the positions of the transceiver modules, plug
connectors, DIP switches and jumpers.

XS
1

Transceiver -
Module
K - Line/LIN2

1

1
S301

Transceiver -
Module
K - Line/LIN1

1

Transceiver -
Module
J1850

Transceiver -
Module
CAN2

Transceiver -
Module
CAN1

1

1

1

J1701 J1601 J1602

J1403 J1502

J1703

J1402 J1501 J1503
J1401

ON
XS
1

Transceiver -
Module
K - Line/LIN2

1

1
S301

Transceiver -
Module
K - Line/LIN1

1

Transceiver -
Module
J1850

Transceiver -
Module
CAN2

Transceiver -
Module
CAN1

1

1

1

J1701 J1601 J1602

J1403 J1502

J1703

J1402 J1501 J1503
J1401

ON

Figure 2-6: Component side of a USB 3080 (schematically)

The configuration elements of Figure 2-6 as well as the indications of
the plug connectors for the transceivers are explained in the table:

XS1401 Transceiver module for CAN1

J1401 Jumper to activate the 120Ω terminating resistor for CAN1

J1402 Jumper to activate the RTH 10kΩ terminating resistor for CAN1

J1403 Jumper to activate the RTL 10kΩ terminating resistor for CAN1

XS1501 Transceiver module for CAN2

J1501 Jumper to activate the 120Ω terminating resistor for CAN2

J1502 Jumper to activate the RTH 10kΩ terminating resistor for CAN2

J1503 Jumper to activate the RTL 10kΩ terminating resistor for CAN2

XS1601 Transceiver module for LIN1/ K-Line1

J1601 Jumper to activate the 680Ω pull-up resistor to VBAT for K-Line1

J1602 Jumper to bridge the reverse polarity diode for VBat for LIN1

XS1701 Transceiver module for LIN2/ K-Line2/ J1850 PWM

J1701 Jumper to activate the 680Ω pull-up resistor to VBAT for K-Line2

J1703 Jumper to bridge the reverse polarity diode for VBat for LIN2

XS1801 Transceiver module for J1850 VPW

S301 DIP switch of the USB 3080 boarde to configurate the microcontroller.
Do NOT change the settings!

2.3.4 Assembly

Hardware

 USB 3080/ basicCAR 3080 – User Manual 2-9

Type: DSub 25 poles socket
For the access to the communication interfaces there is this connector
at the front panel of the USB 3080 board.
The assignments are shown in the following table:

No. XS1 pin Signal name Remarks

1 1 CAN1_High CAN bus high

2 14 CAN1_Low CAN bus low

3 2 CAN2_High CAN bus high

4 15 CAN2_Low CAN bus low

5 3 VBAT Power supply input for transceiver
(see Properties)

6 16 GND Ground potential communication
interfaces

7 4 LIN1/ K-Line1 depending on transceiver

8 17 L-Line1/ WAKE1 depending on transceiver

9 5 LIN2/ K-Line2/ J1850 PWM+ depending on transceiver

10 18 L-Line2/ WAKE2/ J1850 PWM- depending on transceiver

11 6 J1850 VPW

12 19 - Please do not assign

13 7 VBAT Power supply input for transceiver
(see Properties)

14 20 GND Ground potential communication
interfaces

15 8 Analog Input1

16 21 Analog Input2

17 9 Digital Input1

18 22 Digital Output1

19 10 Digital Input2

20 23 Digital Output2

21 11 Digital Input 3

22 24 Digital Output3

23 12 Digital Input 4

24 25 Digital Output4

25 13 Wake line

For K-Line the connections for the L-Line are wired to PIN 17/ 18 if
necessary (depending on the output circuitry).

For LIN the connections for the Wake-Line are wired to PIN 17/ 18
if necessary (depending on the selection of the transceiver).

The pins 3 and 7 (VBAT) as well as 16 and 20 (GND) are bridged on
every USB 3080/ basicCAR 3080 device.

USB Interface
At the device’s rear side there is the USB-B-Socket (with USB standard
assignment) for the USB 2.0 interface

2.3.5 Connector
Assignments

Hardware

2-10 USB 3080/ basicCAR 3080 – User Manual

The LEDs indicate the following states:

♦ Red LED D100: /HDRST hardware reset indication output of the
microcontroller

♦ Green LED D700: Voltage 5V status (internal)
♦ Green LED D701: Voltage 3.3V status (internal)
♦ Green LED D702: Voltage 2.5V status (internal)

♦ Yellow LED D801: CAN 1 status
♦ Yellow LED D802: CAN 2 status
♦ Yellow LED D803: K-Line/ LIN 1 status
♦ Yellow LED D804: K-Line/ LIN 2 status

The LEDs are arranged as follows at the front panel:

D702 D701 D700 D100

D801 D802 D803 D804

2.3.6 LED Display

Hardware

 USB 3080/ basicCAR 3080 – User Manual 2-11

2.4 Delivery Notes
USB 3080/ basicCAR 3080 devices are delivered in the following basic
variants:

♦ 1x CAN interface and 1x LIN interface or
♦ 1x CAN interface and 1x K-Line interface

These basic variants can be extended by the following options:

♦ 1x additional CAN interface
♦ 1x additional LIN interface or K-Line interface
♦ 1x additional J1850 VPW interface
♦ 1x additional J1850 PWM interface

If you select the 1x Additional J1850 PWM interface option, the
1x Additional LIN interface or K-Line interface option is NOT possible.

In addition to selecting an interface, the type of the corresponding
CAN/ LIN/ K-Line/ J1850 transceiver as well as the required
Functionalities for each CAN/ K-Line/ J1850 interface must be selected.

In the case a basicCAR 3080 does not provide enough resources for
your applications, there is the GOEPEL electronic USB rack available to
cover up to 16 USB boards.
Then the power supply comes from a built-in power supply unit with
230V or 115V connector at the device’s rear side.

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-1

3 Control Software
There are three ways to integrate USB 3080/ basicCAR 3080 hardware
in your own applications:

♦ Programming via G-API
♦ Programming via DLL Functions
♦ Programming with LabVIEW

3.1 Programming via G-API
The G_API (GOEPEL-API) is the favored user interface for this
GOEPEL hardware.
You can find all necessary information in the G-API folder of the
delivered CD.

3.2 Programming via DLL
Functions

Programming via DLL Functions is possible also in future for existing
projects which can not be processed with the GOEPEL electronic
programming interface G-API.

We would be pleased to send the GOEPEL Firmware documentation to
you on your request. Please get in touch with our sales department in
case you need that.

The GUSB_Platform expression used in the following function
description stands for the name of a GOEPEL electronic USB driver.

For the used structures, data types and error codes refer to the
headers – you find the corresponding files on the supplied CD.

In this User Manual, Controller means ALWAYS the microcontroller
assigned to the CAN/ LIN/ K-Line/ J1850 interfaces of a USB 3080/
basicCAR 3080 device.
On the other hand, USB Controller means ALWAYS the controller
providing the USB 2.0 interface of the USB 3080/ basicCAR 3080
device.

Control Software

3-2 USB 3080/ basicCAR 3080 – User Manual

The DLL functions for programming using the Windows device driver
are described in the following sections:

♦ Driver_Info
♦ DLL_Info
♦ Write_FIFO
♦ Read_FIFO
♦ Read_FIFO_Timeout
♦ Write_Command
♦ Read_Command
♦ Xilinx_Download
♦ Xilinx_Version

3.2.1 Windows
Device Driver

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-3

The GUSB_Platform_Driver_Info function is for the status query of the
hardware driver and for the internal initialization of the required
handles.

Executing this function at least once is obligatory before calling any
other function of the GUSB_Platform driver.

Format:

int GUSB_Platform_Driver_Info(GUSB_Platform_DriverInfo *pDriverInfo,

 unsigned int LengthInByte)

Parameters:

Pointer, for example pDriverInfo
to a data structure
For the structure, see the GUSB_Platform.h file on the delivered CD

LengthInByte
Size of the storage area pDriverInfo is pointing to, in bytes

Description:
The GUSB_Platform_Driver_Info function returns information regarding
the status of the hardware driver.
For this reason, the address of the pDriverInfo pointer has to be
transferred to the function. By means of the LengthInByte parameter
the function checks internally if the user memory is initialized
correctly.
The function fills the structure pDriverInfo is pointing to with
statements regarding the driver version, the number of all involved
USB controllers (supported by this driver) and additional information,
e.g. the serial number(s).

Making the hardware information available
as well as initializing the belonging handles is obligatory for the
further use of the USB hardware.

3.2.1.1 Driver_Info

Control Software

3-4 USB 3080/ basicCAR 3080 – User Manual

The GUSB_Platform_DLL_Info function is for the version number query
of the DLL.

Format:

int GUSB_Platform_DLL_Info(GUSB_Platform_DLLinfo *DLLinformation)

Parameter

Pointer, for example DLLinformation
to a data structure
For the structure, see the GUSB_Platform.h file on the delivered CD

Description:
The GUSB_Platform_DLL_Info function returns the DLLinfo structure.
The first integer value contains the version number of the
GUSB_Platform.dll.

Examples:
Version number 1.23 is returned as 123,
and version number 1.60 as 160.

3.2.1.2 DLL_Info

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-5

With the GUSB_Platform_Write_FIFO function a command is sent to the
Controller.

Format:

int GUSB_Platform_Write_FIFO(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pWrite,
 unsigned int DataLength)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pWrite
to the write data area

DataLength
Size of the storage area pWrite is pointing to, in bytes
Data is consisting of Command Header and Command Bytes
(Currently max. 1024 bytes per command)

Description:
The GUSB_Platform_Write_FIFO function sends a command to the
Controller.
For the general structure, see the General Firmware Notes section of
the GOEPEL Firmware document.

3.2.1.3 Write_FIFO

Control Software

3-6 USB 3080/ basicCAR 3080 – User Manual

The GUSB_Platform_Read_FIFO function is for reading a response from
the Controller.

Format:

int GUSB_Platform_Read_FIFO(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pRead,
 unsigned int *DataLength)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After successful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
(Currently max. 1024 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Description:
The GUSB_Platform_Read_FIFO function reads back the oldest
response written by the Controller. In the case no response was
received within the fixed Timeout of 100 ms, the function returns NO
error, but the Number of bytes actually read is 0 !!!

3.2.1.4 Read_FIFO

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-7

The GUSB_Platform_Read_FIFO_Timeout function is for reading a
response from the Controller within the Timeout to be given.

Format:

int GUSB_Platform_Read_FIFO_Timeout(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_FIFO_Interface_Buffer *pRead,
 unsigned int *DataLength,
 unsigned int Timeout)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After sucessful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
(Currently max. 1024 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Timeout
To be given in milliseconds (500 as a standard value)

Description:
The GUSB_Platform_Read_FIFO_Timeout function reads back the oldest
response written by the Controller. In the case no response was
received within the Timeout to be given, the function returns NO
error, but the Number of bytes actually read is 0 !!!

3.2.1.5 Read_
FIFO_Timeout

Control Software

3-8 USB 3080/ basicCAR 3080 – User Manual

With the GUSB_Platform_Write_COMMAND a configuration command is
sent to the USB Controller.

Format:

int GUSB_Platform_Write_COMMAND(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_COMMAND_Interface_Buffer *pWrite,
 unsigned int DataLength)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pWrite
to the write data area

DataLength
Size of the storage area pWrite is pointing to, in bytes
See also USB Controller Control Commands
(Currently max. 64 bytes per command)

Description:
The GUSB_Platform_Write_COMMAND function sends a command to the
USB Controller.
For the general structure, see the USB Controller Control Commands
section.

3.2.1.6 Write_
COMMAND

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-9

The GUSB_Platform_Read_COMMAND function is for reading a response
from the USB Controller.

Format:

int GUSB_Platform_Read_COMMAND(unsigned int DeviceName,
 unsigned int DeviceNumber,
 t_USB_COMMAND_Interface_Buffer *pRead,
 unsigned int *DataLength)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Pointer, for example pRead
to the reading buffer
After sucessful execution of the function, there is the data in this
reading buffer, consisting of Response Header and Response Bytes
See also USB Controller Control Commands
(Currently min. 64 bytes per response)

DataLength
Prior to function call: Size of the reading buffer in bytes (to be given)
After function execution: Number of bytes actually read

Description:
The GUSB_Platform_Read_COMMAND function reads back the oldest
response written by the USB Controller.
If several responses were provided by the USB Controller, up to two of
these responses are written into the buffer of the USB Controller.
More possibly provided responses get lost!

3.2.1.7 Read_
COMMAND

Control Software

3-10 USB 3080/ basicCAR 3080 – User Manual

The GUSB_Platform_Xilinx_Download function is to load an FPGA file to
the XILINX.

Format:

int GUSB_Platform_Xilinx_Download(unsigned int DeviceName,
 unsigned int DeviceNumber,
 char *pFileName,
 unsigned char *pFirmwareErrorCode)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

pFileName
Path of the FPGA file to be loaded

pFirmwareErrorCode
Error code occurring during executing this DLL function
(error code 0 means no error occurred)
(error codes -> card firmware see GUSB_Platform_def.h)

Description:
The GUSB_Platform_Xilinx_Download function allows to load an FPGA
file to the XILINX (extension *.cfd).
The loaded data is volatile. Therefore the function has to be executed
again after switching off power.

After Xilinx_Download, a delay of about 500 ms is required
(as the controllers execute a power-on reset).
Then, carry out the 0x10 Software Reset firmware command to come
into the normal operating mode from bootloader mode.

3.2.1.8 Xilinx_
Download

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-11

The GUSB_Platform_Xilinx_Version function allows reading out the
version of the loaded XILINX firmware.

Format:

int GUSB_Platform_Xilinx_Version(unsigned int DeviceName,
 unsigned int DeviceNumber,
 unsigned int *Version)

Parameters:

DeviceName
Type of the addressed device (number declared in
GUSB_Platform_def.h, for USB 3080/ basicCAR 3080 = 6)

DeviceNumber
Number of the addressed device. In the case several devices of the
same type are connected, numbering is carried out according to their
serial numbers in ascending order (the device with the LEAST serial
number has always the DeviceNumber 1).

Version
XILINX software version

Description:
The GUSB_Platform_Xilinx_Version function can be used to read out
the version number of the software loaded to the FPGA.

Example:
Version number 2.34 is returned as 234, version 2.60 as 260.

3.2.1.9 Xilinx_
Version

Control Software

3-12 USB 3080/ basicCAR 3080 – User Manual

3.3 Programming with LabVIEW

On the delivered CD there is a folder with VIs to call USB 3080/
basicCAR 3080 devices under LabVIEW.
The LabVIEW VIs use the functions of the GOEPEL G-API for this.

On the delivered CD there is a folder with VIs to call USB 3080/
basicCAR 3080 devices under LabVIEW.
The functions described in the Windows Device Driver section are
used for this.

3.4 Further GOEPEL Software
PROGRESS, Program Generator and myCAR of GOEPEL electronic are
comfortable programs for testing with GOEPEL hardware.
Please refer to the corresponding Software Manuals to get more
information regarding these programs.

3.3.1 LabVIEW
via G-API

3.3.2 LLB using
the Windows
Device Driver

Control Software

 USB 3080/ basicCAR 3080 – User Manual 3-13

3.5 USB Controller
Control Commands

The USB Controller is responsible for connecting the USB 3080/
basicCAR 3080 device to the PC via USB 2.0.
Messages (generally USB commands) required for configuration can
be sent to this USB Controller.

A USB command consists of four bytes Header and the Data (but
Data is NOT required for all USB commands!).
The header of a USB command has the following structure:

Byte number Indication Contents

0 StartByte 0x23 (“#” ASCII character)

1 Command (0x..)
used codes according to USB Commands

2 reserved 0x00

3 reserved 0x00

Same as a USB command, also the USB response consists of four
bytes Header and the Data (but Data is NOT returned by all USB
commands!).
The header of a USB response has the following structure:

Byte number Indication Contents

0 StartByte 0x24
1 Command (0x..)

used codes according to USB Commands

2 Length Length depending on the command

3 ErrorCode Returns the error code of the command

At present there is only the READ_SW_VERSION USB command
available.

Command Indication Description

0x04 READ_SW_VERSION Provides the firmware version of the USB Controller

Response:
Byte 4: low byte of generic software version
Byte 5: high byte of generic software version
Byte 6: low byte of software version of functional part
Byte 7: high byte of software version of functional part

3.5.1 USB
Command
Structure

3.5.2 USB
Response
Structure

3.5.3 USB
Commands

Index

 USB 3080/ basicCAR 3080 – User Manual i

C

Connector
Front 2-9

Controller
Command 3-5
Response 3-6, 3-7

G

G-API 3-1

L

LabVIEW
G-API 3-12
Windows 3-12

T

Transceiver
CAN 2-5
J1850 2-7
K-Line 2-6
LIN 2-6

U

USB Command structure .. 3-13
USB Commands 3-13
USB Controller

Command 3-8
Control commands 3-13
Response 3-9

USB Response structure ... 3-13

W

Windows device driver 3-2

	1 Installation
	1.1 Hardware Installation
	1.2 Driver Installation

	2 Hardware
	2.1 Definition
	2.2 Technical Specification
	2.2.1 Dimensions
	2.2.2 Properties

	2.3 Construction
	2.3.1 General
	2.3.2 Communication Interfaces
	2.3.3 Addressing
	2.3.4 Assembly
	2.3.5 Connector Assignments
	2.3.6 LED Display

	2.4 Delivery Notes

	3 Control Software
	3.1 Programming via G-API
	3.2 Programming via DLL Functions
	3.2.1 Windows Device Driver
	3.2.1.1 Driver_Info
	3.2.1.2 DLL_Info
	3.2.1.3 Write_FIFO
	3.2.1.4 Read_FIFO
	3.2.1.5 Read_ FIFO_Timeout
	3.2.1.6 Write_ COMMAND
	3.2.1.7 Read_ COMMAND
	3.2.1.8 Xilinx_ Download
	3.2.1.9 Xilinx_ Version

	3.3 Programming with LabVIEW
	3.3.1 LabVIEW via G-API
	3.3.2 LLB using the Windows Device Driver

	3.4 Further GOEPEL Software
	3.5 USB Controller Control Commands
	3.5.1 USB Command Structure
	3.5.2 USB Response Structure
	3.5.3 USB Commands

	Unbenannt

