Embedded JTAG Solutions Application - · test development independent of software or firmware development status - · fast error detection on prototypes for better time-to-market - · pin-accurate diagnosis - · combination of test and programming - · parallel processing of several test targets - · combination of structural and functional test - · easy automation - · generation of safe test vectors - · integration of safety and security mechanisms #### Embedded JTAG Solutions In the electronics industry, ICs are becoming ever smaller and the packing density is increasing. As a result, access via pins is decreasing rapidly. For this reason, a test procedure has been developed which can control and measure almost every pin via a serial sliding chain. Typically 4 signals are required for this. This method became known as JTAG/Boundary Scan and was standardised in 1990. JTAG/Boundary Scan offers unique possibilities for expansion due to its open architecture and the versatility of the JTAG interface. These characteristics make JTAG/Boundary Scan a technological basis for new, non-intrusive access methods and standards for testing, debugging, programming and emulation: the Embedded JTAG Solutions. IP = Intellectual Property ## Application overview | Application | Tool/Licence | CASCON GALAXY | | | | | | | ware
form | Performance | | | | |---|--------------------------------------|---------------|----------|--------------|--------------|----------|----------|----------|--------------|-------------|----------|----------|----------| | | | Pin Access | Base | Standard EJS | Professional | Expert | ISP | SCB II | SFX II | Static | At-Speed | Nominal | Stress | | Infrastructure test | ATPG Infrastructure | ✓ | √ | √ | √ | √ | √ | J | √ | V | | √ | | | Connection test | ATPG Interconnection 1149.1 & 1149.6 | opt | √ | V | √ | √ | X | √ | J | √ | √ | | | | RAM Connection test | ATPG Memory
Access | opt | opt | J | J | J | Х | J | J | J | | | | | Logic clustertest | ATPG Clusters
(Truth Table) | opt | opt | opt | opt | / | X | / | / | V | | | | | | ATPG Logic
Components | | 5 5 | 5 5 6 | 5 5 5 | | | | | | | | | | Logic clustertest | ATPG Clusters
(Wave Form) | opt | opt | opt | √ | √ | X | √ | J | √ | | | | | Boundary Scan
with Flying Pro-
be or ICT Test | ATPG Interactive
ATE | opt | opt | opt | opt | opt | X | ✓ | √ | J | | | | | Component test -
model based
(e. g. LED, Clock) | ATPG Device Model | opt | opt | √ | J | J | X | ✓ | J | J | | | | | Embedded Built in Self Test | Basic Test
Generation | J | √ | J | J | J | X | √ | J | J | | | | | FPGA - RAM
Connection test* | ATPG Memory
Access | opt | opt | J | J | J | X | ✓ | J | | J | | | | FPGA -
functional RAM
Connection test* | ATPG Memory
Access | opt | opt | √ | J | ✓ | X | √ | ✓ | | | J | | | FPGA - RAM
Stress Test* | ATPG Memory
Access | opt | opt | √ | √ | √ | X | ✓ | J | | | | √ | | FPGA Frequency
measurement* | Basic Test
Generation | V | √ | J | J | J | X | √ | J | | | √ | | | FPGA Bit Error
Rate Test (BERT)* | Basic Test
Generation | V | √ | J | J | J | Х | \ | J | | | √ | | | FPGA Ethernet
Fram Error Rate
Test (FERT)* | Basic Test
Generation | ✓ | J | √ | J | J | X | √ | ✓ | | | J | | | μP - Connection test* | Basic VarioTAP Test
Generation | opt | opt | opt | √ | J | Х | ✓ | J | | | √ | | | μP - RAM-
Connection test* | AVTG Dynamic
Memory Access | opt | opt | opt | J | J | Х | √ | J | | | √ | | | μP - RAM
Stress Test* | AVTG Dynamic
Memory Access | opt | opt | opt | √ | √ | Х | √ | J | | | | √ | | Application | Tool/Licence | CASCON GALAXY | | | | | | | ware
form | | Perfor | mance | ! | |------------------------------|-----------------------------------|---------------|------|--------------|--------------|----------|-----|--------|--------------|--------|----------|---------|--------| | | | Pin Access | Base | Standard EJS | Professional | Expert | ISP | SCB II | SFXII | Static | At-Speed | Nominal | Stress | | μP - GPIO/ADC/
DAC-Test* | Basic VarioTAP Test
Generation | opt | opt | opt | J | J | Χ | √ | J | | | J | | | μP - Interface Test* | Basic VarioTAP Test
Generation | opt | opt | opt | J | J | Х | ✓ | J | | | J | | | μP - Systembus
Test* | Basic VarioTAP Test
Generation | opt | opt | opt | J | √ | Х | √ | √ | | | J | | | μP - System Cluster
Test* | Basic VarioTAP Test
Generation | opt | opt | opt | V | √ | Х | ✓ | √ | | | J | | [✓] Support up to maximum speed ## Programming overview | Programming | Tool/Licence | | CASCON GALAXY | | | | | Hardware
platform | | Performance | | | | |--|---------------------------------|------------|---------------|--------------|--------------|--------|-----|----------------------|--------|-------------|----------|---------|--------| | | | Pin Access | Base | Standard EJS | Professional | Expert | ISP | SCB II | SFX II | Static | At-Speed | Nominal | Stress | | Flash (SPI/I ² C/NAND
/NOR/eMMC) | Automated Flash
ISP (AFPG) | opt | opt | J | J | J | J | \ | J | J | | | | | PLD/FPGA | PLD Program
Generators | opt | opt | J | J | J | J | ✓ | J | | | J | | | FPGA - Flash
(SPI/I ² C/NAND/
NOR/eMMC) | Automated Flash
ISP (AFPG) | opt | opt | J | J | J | J | √ | J | | J | | | | FPGA - Boot Flash
(SPI/I ² C) | Automated Flash
ISP /AFPG) | opt | opt | J | J | J | J | / | J | | | J | | | μP - Onchip-Flash* | Automated
VarioTAP Flash ISP | opt | opt | J | J | J | J | ✓ | J | | | J | | | μP - Flash
(SPI/I²C/NAND/NOR/
eMMC)* | Automated
VarioTAP Flash ISP | opt | opt | J | J | J | J | √ | J | | | J | | | X-BUS
(SPI/I ² C/NAND/NOR/
eMMC)* | X-BUS Scripting | opt | opt | opt | opt | J | opt | √ | J | | | J | | [✓] Support up to maximum speed $[\]checkmark$ Limited performance X not possible opt available as a separate software option | Visualisation
tools & Features | Tool/Licence | | CASCON GALAXY | | | | | | | | | |---|--|------------|---------------|--------------|--------------|--------|-----|----------|----------|--|--| | | | Pin Access | Base | Standard EJS | Professional | Expert | ISP | SCBII | SFX II | | | | Pin Toggler | ScanAssist Multi
Mode Debugger | ✓ | √ | J | J | J | Х | J | J | | | | Multi Mode
Debugger | ScanAssist Inter-
active Pin Toggler | ✓ | √ | J | J | J | Х | J | J | | | | Automatic scan chain detection | Visual Project
Explorer - VIPX | √ | √ | J | J | J | X | J | J | | | | Visualisation in the
PDF circuit diagram | Scan Vision III
Schematic Reader
Scan Vision III
Schematic Viewer | opt | opt | opt | opt | opt | X | √ | J | | | | Visualisation in the board layout | Scan Vision III
Schematic Reader
Scan Vision III
Schematic Viewer | opt | opt | opt | J | J | X | J | J | | | | VIPX netlist | Visual Project
Explorer - VIPX | J | J | J | J | J | X | J | J | | | [✓] Support up to maximum speed ✓ Limited performance | Performan | Performance | | | | | | | | |---------------|--|--|--|--|--|--|--|--| | Static | Signal changes take place very far (by orders of magnitude) below the functional speed of the controlling pin | | | | | | | | | At-Speed | Signal changes take place below the functional speed of the controlling pin | | | | | | | | | Nominal-Speed | Signal changes take place at the functional speed of the controlling pin | | | | | | | | | Stress | Signal changes take place at the functional speed and different parameterisation or at a higher speed and/or different parameterisation of the controlling pin | | | | | | | | X not possible opt available as a separate software option ### Classification of applications Each step in the program flow has a certain basic goal, such as testing, programming, HW debugging or validation; it is defined by very specific characteristics, such as the instrument used, the execution environment, the execution speed or even interactions with other instruments. | Application type | Key application contents | |-------------------------------|---| | structural test | structures like pins/nets are tested, but component functionality (other than transparent logic and bus drivers) are not | | semi-structural test | test of the same elements as in structural testing, but the test
procedure is integrated into a functional framework, e.g. in
BERT, data streams are evaluated to assess signal quality | | functional test | test of functional elements, e.g. decoders, oscillators, multiplexers, interfaces or others | | parametric (analogue)
test | test of parameters (e.g. frequency of an oscillator signal, voltage values) using CION-LX I/O modules and μ P-GPIO/ADC/DAC test resources | | HW-debugging/validation | interactive test of register structures, pins, connections or logic functions and comparison against specifications, modelling | | programming | programming of non-volatile memory, such as μP-internal flash, NAND, NOR, eMMC, SPI, I²C, PLD/FPGA or others | | PLC state | typical requirements | |----------------|---| | design | detailed/accurate DfT analysis to enhance defect coverage and reduce manufacturing cost | | prototyping | verification of important signal connections and functional parameters, e.g. correct clocks | | manufacturing | highly effective fault recognition with detailed reporting for rapid localization | | field support | fast secure firmware updates | | repair/service | test, fault localization and updates | • GÖPEL electronic GmbH Goeschwitzer Str. 58/60 07745 Jena · Germany +49 3641 · 68 96 0 Phone +49 3641 · 68 96 944 Fax